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Abstract 

 

 

 

Diniz, Pedro Henrique Bandeira; Gattass, Marcelo (Advisor). Detection of 

Regions of White Matter Lesions of the Brain in T1 and Flair Images. 

Rio de Janeiro, 2018. 98p. Tese de Doutorado - Departamento de 

Informática, Pontifícia Universidade Católica do Rio de Janeiro. 

 

 

White matter lesions are non-static brain lesions that have a prevalence rate 

up to 98% in the elder population, although it is also present in the young 

population. Because it may be associated with several brain diseases, it is important 

to detect them as early as possible. Magnetic resonance imaging provides three-

dimensional data for visualization and analysis of soft tissues as it contains rich 

information about their anatomy. However, the amount of data acquired for these 

images may be too much for manual analysis/interpretation alone, representing a 

difficult and time-consuming task for specialists. Therefore, this doctoral thesis 

presents four new computational methods to automatically detect white matter 

lesions in magnetic resonance images, based mainly on algorithms SLIC0 and 

Convolutional Neural Networks. Our primary objective is to provide the necessary 

tools for specialists to accelerate their works and suggest a second opinion. From 

the four proposed methods, the one that achieved best results was applied on 91 

magnetic resonance images, and achieved an accuracy of 97.93%, specificity of 

98,02% and sensitivity of 90,12%, without using any candidate reduction 

techniques. 

 

 

 

Keywords 
White matter lesion; Magnetic resonance imaging; Computer-aided 

detection; SLIC0; Convolutional neural networks.  
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Resumo 

 

 

 

Diniz, Pedro Henrique Bandeira; Gattass, Marcelo (Orientador). Detecção 

de Regiões de Lesões na Substância Branca do Cérebro em Imagens T1 

e FLAIR. Rio de Janeiro, 2018. 98p. Tese de Doutorado - Departamento de 

Informática, Pontifícia Universidade Católica do Rio de Janeiro. 

 

 

As lesões da substância branca são lesões cerebrais não estáticas que têm 

uma taxa de prevalência de até 98% na população idosa, embora também esteja 

presente na população jovem. Uma vez que elas podem estar associadas a várias 

doenças cerebrais, é importante detectá-las o mais cedo possível. A ressonância 

magnética fornece dados tridimensionais para visualização e análise de tecidos 

moles, pois contém informações ricas sobre sua anatomia. No entanto, a quantidade 

de dados adquiridos para essas imagens pode ser excessiva para análise / 

interpretação manual, representando uma tarefa difícil e demorada para 

especialistas. Portanto, esta tese de doutorado apresenta quatro novos métodos 

computacionais para detectar automaticamente lesões de substância branca em 

imagens de ressonância magnética, baseadas principalmente nos algoritmos SLIC0 

e Convolutional Neural Networks. Nosso principal objetivo é fornecer as 

ferramentas necessárias para que os especialistas acelerem seus trabalhos e sugiram 

uma segunda opinião. Dos quatro métodos propostos, o que obteve melhores 

resultados foi aplicado em 91 imagens de ressonância magnética, e obteve uma 

precisão de 97,93%, especificidade de 98,02% e sensibilidade de 90,12%, sem 

utilizar nenhuma técnica de redução de candidatos. 

 

 

 

Palavras-chave 
Lesão na substância branca; Ressonância magnética; Detecção auxiliada por 

computador; SLIC0; Redes neurais convolucionais.  
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behold, I have done according to your words. Behold, 

I have given you a wise and discerning heart, so that 

there has been no one like you before you, nor shall one 

like you arise after you.  

1 Kings 3:12
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1. Introduction 

White matter comprises over half the human brain and is located underlying 

the gray matter cortex. It is composed of neuronal fibers coated with electrical 

insulation called myelin [4]. Individual differences in cognitive development are 

correlated with differences in white matter structure in specific brain regions [5–7]. 

However, the process of myelination is adjustable because of the interaction and 

experience of the individual on the environment, and it affects information 

processing by regulating the velocity and sync of impulse conduction between 

distant cortical regions. The learning process of the skills, such as play an 

instrument, are accompanied by increased organization of white matter structure in 

appropriate brain tracts involved in musical performance [8]. In other words, the 

level of white matter structure increases proportionately to the practice related a one 

skill, indicating white matter changes in acquiring the skill rather than performance 

being predetermined by a limitation on white matter development. 

A wide range of psychiatric and neurological disorders result from damage 

or disease affecting the myelin sheath on nerve fibers, changing the white matter. 

Pathologically, these white matter changes are characterized by partial loss of 

myelin, axons, and oligodendroglial cells [3]. Abnormal changes in brain white 

matter are frequently named in the literature as white matter lesions (WML) [1, 9, 

10], white matter hyperintensity [1, 2, 9, 11, 12] or leukoaraiosis [2, 10, 11, 13]. 

However, WML are non-static lesions. The lesions may progress, or even regress, 

over time. Several longitudinal studies have investigated the rate and predictors for 

progression of WML [14–18]. 

WML may be associated with several factors, and the affected population 

rate may vary according to the region, anomaly, and population sample to which 

the study focuses. However, it is known that they are often detected in elderly 

people [19–24]. For example, studies indicate that in populations over 65 years old, 

the incidence of WML is higher than 30% and increases with age [22, 25] and other 

studies point to a prevalence rate in the range of 15% to 98% in the elderly 

population [20–23, 26–30]. 

Because WML may be associated with several factors, there are a wide 

range of causes and consequences associated with them. As risk factors, they may 

be related to hypertension [21, 31–37], diabetes mellitus [38], hyperlipidemia [7], 

smoking [39], small vessel disease [40, 41], multiple sclerosis [42], Parkinsonism 

[43] (about 30-55% of patients [44–46]), several stroke types [47, 48] (about 67-

98% [49–52]), Alzheimer’s disease [53] (about 28.9% to 100% [54–56]), dementia 

[24, 41, 56], higher blood pressure and fluctuations blood pressure [14, 31, 37, 57], 
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atherosclerosis [25] and heredity [58]. 

In past times, WML were observed on Computerized Tomography (CT) 

when only CT imaging was widely available [48]. However, nowadays, the 

presence of white matter abnormalities is usually established with Magnetic 

Resonance Imaging (MRI). It has several advantages over other imaging techniques 

because it provides three-dimensional data with the possibility to detect and 

emphasize contrast differences in soft tissues by manipulating its parameters, 

providing rich information about the human soft tissue anatomy [59–62]. Although 

different MRI modalities exist, the literature point Fluid Attenuated Inversion 

Recovery (FLAIR) as probably the best MRI technique to observe WML [24, 63, 

64]. WML detected on MRI of modality FLAIR are observed as high value signals 

or hyperintensity regions [24, 48, 64], contrasting with hypointense healthy tissue, 

but WML may be confused with some healthy tissues that also presents 

hyperintensity. Thus, it is not uncommon to use MRI FLAIR combined with other 

MRI techniques such as T1, T2 and Proton Density-Weighted [65]. In the T1 case, 

WML regions hyperintense in FLAIR may appear as iso or hypointense in T1, so 

their information may be combined with FLAIR [65, 66]. 

In order to support specialists in the identification of anomalies in human 

body, many researches have invested substantially in the development of 

computational systems. These systems are named Computer-Aided Detection 

(CAD) and Computer-Aided Diagnostic (CADx). They are usually a product of 

expert knowledge combination which includes image processing, computational 

intelligence, medical physics and medicine - a truly interdisciplinary research field. 

The goal of these systems is improving specialist performance, increasing 

efficiency in medical data analysis by providing additional information and 

judgment about them and reducing workload. So, it is expected specialists to be 

more productive in the process of detection and diagnosing abnormalities, doing 

that earlier and faster because they will have more time to think about the 

interpretation of their findings instead of focusing on all regions of the images. In 

the literature, many CAD examples are applied in several medical images types to 

provide support in the diseases analysis can be found [68–72].  

Detection algorithms in CAD systems are usually divided in the following 

steps (sometimes it is not required all of them): (1) image acquisition, (2) pre-

processing, (3) candidates segmentation, (4) features extraction (sometimes 

followed by features selection) and classification. Because of the complexity of 

performing all these steps, it is not difficult to find researches dividing CAD system 

into two studies or main parts: (A) regions of interest (ROI) segmentation or 

candidates segmentation and (B) candidates classification [68–72]. The purpose of 

the candidates segmentation is to segment as much suspect regions as possible. This 
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may imply in many candidates and the presence of many false positive ones. So, 

the purpose of the candidates classification is to reduce these false positive 

candidates. This work presents both candidates segmentation and classification. 

Several researches related to the task of candidates segmentation in brain 

MRI were proposed in literature. Some of them are based on relatively simple 

methods such as local threshold [73], the intensity gradient [74], fuzzy 

connectedness [75], region growing [76, 77], mathematical morphology [78], 

adaptive thresholding [79] and gaussian mixture model [80].  

Recently, superpixels-based segmentations have been widely used, 

including in brain MRI [81, 82]. They take into consideration that neighboring 

pixels are usually highly correlated and seeks to group them into perceptually 

meaningful atomic regions. One of these segmentations is the Simple Linear 

Iterative Clustering (SLIC), which uses a weighted distance measure that combines 

color and spatial proximity, while simultaneously providing control over the size 

and compactness of the superpixels [83]. However, if the image is smooth in certain 

regions but highly textured in others, SLIC produces smooth regular-sized 

superpixels in the smooth regions and highly irregular superpixels in the textured 

regions [84]. Therefore, this thesis uses an improved version of SLIC, SLIC Zero 

Parameter (SLIC0) [83], which adaptively chooses the compactness factor for each 

superpixel individually and generates regular shaped superpixels in both textured 

and non-textured regions alike, with high computational efficiency. 

A golden rule in computing, the Moore Law [114], describes the exponential 

improvement of computer hardware. According to it, the number of transistors 

incorporated in a chip will approximately double every 24 months. Nowadays, after 

more than 50 years, this rule is still determining the rhythm of innovation and 

development, bringing several benefits impacting in the economic, technological 

and social areas. Accompanying this evolution of computational power, more 

robust software has been developed in the various areas of human knowledge. 

Theories previously computationally impractical and others not even imagined 50 

years ago, are possible today. More specifically in machine learning, deep learning 

techniques have been developed and applied to the most diverse types of data in the 

search for patterns that discriminate one or more classes of states, objects or events. 

It is extremely computationally expensive to train, directly proportional to the 

complexity of the network and the dimensionality of the data. In addition, it requires 

a large amount of data. In recent years, these techniques have been applied rather 

using GPU. According to Schmidhuber [85], GPU-based computers 2 years ago 

have a million times the computational power of desktop machines of the early 

1990s. 

Convolutional neural network (CNN) [89] is one particular type of deep 
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learning that have recently achieved the best results in image classification 

challenges. It has provided excellent results applied in different computational 

vision tasks as traffic sign recognition [93], segmentation of biological images [94], 

detection of pedestrians [95] and human bodies [96] and detection and recognition 

of faces [97, 98] and text [99] in natural images. In recent years, CNN have also 

been applied in the field of medical image [88, 100–102], including brain MRI 

analysis [67, 103–106].  

In this thesis, we present the combination of two state-of-arts techniques: 

(1) SLIC0 algorithm for WML and non-WML regions segmentation and (2) CNN 

for classification of these regions. 

1.1. Motivation 

It is nothing new that the ability to predict, detect and diagnoses human 

diseases through medical image analysis is very promising to assist experts in 

clinical treatment. However, the task of viewing and interpreting these images is 

time-consuming and challenging. In the case of MRI brain, WML can occur at 

multiple sites, with varying shapes and sizes, and their image intensity profiles 

largely overlap with non-affected, healthy parts of the brain or other WML [67]. 

Furthermore, the amount of data is far too much for manual interpretation and has 

been one of the biggest obstacles in the effective use of MRI [59]. Thus, the analysis 

eventually became an exhausting and repetitive process task, even more when is 

necessary to combine several MRI types to accurately perform the diagnosis. The 

workload can lead to distractions and results in a misunderstanding of the diagnosis, 

especially when a patient simultaneously presents (1) large number and different 

types of anomalies and (2) parts of the same anomaly are present in several slices.  

In addition, another difficult task in MRI analysis is the segmentation of 

WML. Studies have investigated this inherent variability in the manual 

segmentation of WML by trained specialists and reported volume ranging in until 

68% [65].  

Knowing all these issues in WML manual detection and segmentation, it is 

indeed important to develop computational techniques that assist the healthcare 

professionals and reduce misinterpretation and its consequences.  

In this work, it is expected that an automatic WML segmentation software 

could assist radiologists. Preliminary results presented by it should not only reduce 

the workload, but also improve final results by offering a second opinion to the 

specialist. In addition, it is also expected that radiologist detects WML faster once 

the machine will do part of the job. 
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1.2. Objectives 

1.2.1. General Objective 

The general objective of this work is to present new computational methods 

for automatic detection of WML in different MRI modalities, using for this purpose, 

image analysis, clustering and machine learning techniques. 

1.2.2. Specific Objectives 

To achieve the general objective, it is necessary to fulfill the following 

specific objectives: 

• Develop new computational methods for automatic detection of 

WML using only FLAIR MRI modality; 

• Develop new computational methods for automatic detection of 

WML using FLAIR and T1 MRI modalities together, acquired from 

the same patient; 

1.3. Work Organization 

This work is organized as follows:  

The Chapter 2 introduces the main concepts needed to understand this work. 

The Chapter 3 presents four methods for WML detection. The first two 

methods use only the MRI of modality FLAIR. Both uses pre-processing 

techniques, SLIC0 for candidates segmentation, and CNN for classification, but the 

first one uses common CNN and simple patches while the second one uses parallel 

CNN with sets of multiscale patches. The last two methods use MRI modalities 

FLAIR and T1 together. Both uses pre-processing techniques, SLIC0 for candidates 

segmentation, and CNN for classification, but the first one uses parallel CNN and 

pairs of patches of T1 and FLAIR images while the second one uses common CNN 

with patches generated from pixelwise comparison of T1 and FLAIR images. 

In Chapter 4, it is shown and discussed the results achieved through the 

application of the methods on the database. It is also shown some study of cases 

and the results are compared with related works. 

Finally, in Chapter 5, it is presented the final remarks about this work. There, 

this work is evaluated, showing its contribution as well as proposing others as future 

works to achieve better results.
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2. Theoretical Foundation 

This chapter discusses the concepts necessary to understand the methods on 

next chapters. It starts explaining the DICOM standard, which is standard of the 

used database. Then, it is explained Clustering algorithms such as SLIC0, used here 

for candidates segmentation in MRI. Following, it is explained Image Registration 

used for better comparison of T1 and FLAIR MRI. Finally, it is explained Artificial 

Neural Networks and especially Convolutional Neural Networks which is used in 

this thesis for classifying WML candidates. 

2.1. DICOM Standard 

 The word DICOM is an abbreviation for Digital Imaging and 

Communications in Medicine. 

The DICOM standard was created by the American College of Radiology 

(ACR) and the National Electrical Manufactures Association (NEMA) in a 

committee in 1983. It emerged with the objective of standardizing the format of the 

images and their information used between the different manufacturers of computed 

tomography, nuclear magnetic resonance, ultrasound and so on. With this 

standardization, it would be possible to exchange information between physicians 

and specialists who are in different locations, especially with the use of Picture 

Archiving and Communications Systems (PACS), which allow the creation of 

databases [115]. 

The DICOM standard internally is a set of standards for treatment, storage 

and transmission of medical information in an electronic format, structuring a 

protocol. In other words, the DICOM standard is a set of rules that allow medical 

images and associated information to be exchanged between diagnostic imaging 

equipment, computers, and hospitals. The standard establishes a common language 

between equipment of different brands, which are generally not compatible, and 

between imaging equipment and computers, whether in hospitals, clinics or 

laboratories. 

The DICOM standard should specify the following information: the set of 

protocols to be followed by the applications and equipment, the syntax and 

semantics of protocol commands, and associated information among others. 

A DICOM file consists of a header and a body. The header contains 

information useful in interpreting the contents of the body of the file. You can find 

the size of the image, the level of compression, the date of the exam, etc. the body 

carries the image itself, which can be stored either in raw or compressed format in 

JPEG format. 
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In this thesis, the database used to validate our results is in DICOM standard. 

2.2. Clustering 

Grouping, also known as agglomeration or clustering, is a process by which 

individuals of a given sampling are divided into clusters obeying one or more 

criteria that compute the similarity between these individuals. An effective 

grouping should create groups so that individuals within the same group are as 

similar as possible and individuals from different groups are as different as possible. 

In other words, a clustering seeks to maximize interclass distance (distance between 

groups) and minimize intraclass distance (distance between individuals of the same 

group). 

The grouping can be found under different names in different contexts, such 

as unsupervised learning (in pattern recognition), numerical taxonomy (in biology, 

ecology), typology (in social sciences), and partitioning (in graph theory). [116] 

2.2.1. Superpixels 

The concept of superpixels can be defined as a grouping of pixels based on 

one or more meaningful criteria. The purpose of this grouping is to capture the 

redundancies present in the image, forming atomic regions that which pixels carry 

related information and considerably reduce the complexity of image processing 

tasks.  

The literature shows a variety of superpixel algorithms and their different 

applications, such as object segmentation [126-128], depth estimation [129], 

segmentation [130], body model estimation [131], and object localization [126]. In 

addition, a different segmentation approach has been widely used, including in 

segmentation problems in brain MRI. In this approach, pixels are grouped into 

perceptually meaningful atomic regions, taking into consideration that neighboring 

entities are usually highly correlated. One of the techniques related to this approach 

is the Simple Linear Iterative Clustering (SLIC), which uses a weighted distance 

measure that combines color and spatial proximity, while simultaneously providing 

control over the size and compactness of the superpixels [83].  

However, if the image is smooth in certain regions but highly textured in 

others, SLIC produces smooth regular-sized superpixels in the smooth regions and 

highly irregular superpixels in the textured regions [84]. Therefore, in this thesis 

was used an improved version of SLIC, called SLIC0 [83], which adaptively 

chooses the compactness factor for each superpixel individually and generates 

regular shaped superpixels in both textured and non-textured regions alike, with 

high computational efficiency. 
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For a better understanding of the SLICO algorithm, the SLIC algorithm 

theory, its precursor, will be explained first. Then, the additional concepts that 

improved this technique to create SLIC0 are introduced. 

2.2.1.1. SLIC 

SLIC is a superpixels algorithm based on the K-means [112] algorithm that 

has as main advantage the reduction of the number of distance calculations by 

limiting the search space to a region proportional to the superpixel size. Given a 

color image in the CIELAB [112] color space with N pixels and a number of desired 

superpixels k, the clustering procedure begins with an initialization of the cluster 

center 𝐶𝑖 = [𝑙𝑖 𝑎𝑖 𝑏𝑖 𝑥𝑖  𝑦𝑖]
𝑇, where l, a and b are the channels of an image in 

CIELAB color space and x and y are pixel coordinates. These clusters are sampled 

on a regular grid and composed by 𝑆 pixels defined by: 

𝑆 = √
𝑁

𝐾
                                                         (1) 

To avoid centralizing a superpixel in an edge region or centering on a noise 

pixel, its centers are moved to lower gradient locations in a 3 × 3 neighborhood. 

Then, each pixel i is associated with the center of the nearest superpixel in a 

centered area with a 2S x 2S extension, by a distance 𝐷. The distance measurement 

used by the SLIC is a 5-dimensional Euclidean distance in a labxy space, which 

combines color (l, a and b) and proximity distances between pixels (x and y) in a 

standardized way in a single distance. This measure is expressed by the equation: 

𝐷 =  √𝑑𝑐
2  +  (

𝑑𝑠

𝑁𝑠
)2 ∗  𝑚2                                          (2) 

where 𝐷 is the distance measure used by the algorithm, 𝑚 is a user-chosen 

compactness factor that ponders the relative importance between color similarity 

and spatial similarity, 𝑆 the size of the superpixel (Equation 1), 𝑑𝑐 is the measure 

of color distance between a pair of pixels i, j, expressed by the equation: 

𝑑𝑐 =  √ ( 𝑙𝑗 −  𝑙𝑖)2 + (𝑎𝑗 −  𝑎𝑖)2 +  (𝑏𝑗 − 𝑏𝑖)2                    (3) 

and 𝑑𝑠 is a measure of spatial distance expressed by equation: 

𝑑𝑠 =  √ ( 𝑥𝑗 −  𝑥𝑖)2 + (𝑦𝑗 −  𝑦𝑖)2                                (4) 

2.2.1.2. SLIC0 

The authors of the SLIC algorithm have observed that in superpixels 

covering larger regions, the contribution of the space distance component 
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outweighs the contribution of the color distance component. This produces compact 

superpixels that do not adhere well to image boundaries. For smaller superpixels, 

the inverse is true. In regions of irregular texture, the color distance component 

stands out. Thus, with SLIC, it is a challenge to test values for the parameter m 

(compactness parameter) that best fit the problem that will be applied. 

In order to circumvent this detail, the SLIC0 algorithm was proposed, which 

dynamically normalizes both the distance components of each superpixel through 

the maximum values obtained from each of them, for each particular superpixel. 

Mathematically, this can be expressed as: 

𝐷 =  √(
𝑑𝑐

𝑚𝑐
)2  +  (

𝑑𝑠

𝑚𝑠
)2                                              (5) 

where 𝑚𝑐 corresponds to the maximum color distance observed on the superpixel 

and 𝑑𝑠 corresponds to the maximum spatial distance observed in the superpixel. 

This new strategy produces superpixels that present a more regularized shape, 

regardless of the type of image.  

Figure 1 illustrates the application of SLIC0 algorithm and compare the 

results with SLIC. 

 

Figure 1: SLIC versus SLIC0. Top row of images shows SLIC output with a 

constant compactness factor for all superpixels, while the bottom row of images 

shows the output of SLICO, which chooses the compactness factor adaptively for 

each superpixel. [84] 

 

The Equation 3 can be adapted to grayscale images. In this case, only light 

information is considered. This adaptation was used in this work, since the MRI 

does not have chromaticity components. This adaptation can be expressed through 

equation:   
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𝑑𝑐 =  √ ( 𝑙𝑗 −  𝑙𝑖)2                                                 (6) 

As for the spatial distance component, this work was limited to using 

Euclidean distance in 2D, even the images being 3D. That is, the algorithm was 

applied slice to slice, separately. The justification for this choice is that the spacing 

between slices of all the MRI slices is very large, that is, in the z axis the information 

is not equally spaced with respect to the x and y axes. 

2.3. Image registration 

The literature uses several definitions for images registration. Brown [117] 

defines image registration as the process of transforming different sets of data into 

the same coordinate system. The data can be several photographs, data from 

different sensors, different times, or from different points of view. 

Crum et al [118], in turn, explains the registration of images as a process for 

determining the correspondence between the characteristics of images collected at 

different times or using different imaging methods. Matches can be used to change 

appearance - by rotation, translation, stretching, etc. - from one image so that it 

more closely resembles the other so that the pair can be directly compared, 

combined or analyzed. The most intuitive use of registration is to correct different 

patient positions between scans. 

Image registration consists of the following elements: two images, one fixed 

image and one moving image, a metric of similarity, a transformation function, an 

optimizer and an interpolator. 

The metric of similarity is a numerical measure responsible for saying how 

much the moving image is similar to fixed one. The transformation function is the 

function that changes the moving image coordinates. This transformation function 

is calculated by the optimizer, optimizing some metric of similarity. Thus, the 

registration is an optimization problem, in which an optimizer estimates the 

transformation function that best maps the moving image to fixed image space, 

according to a value obtained by the metric of similarity. 

Historically, registrations are divided into two groups: rigid registration and 

deformable (or non-rigid) registration. Rigid registration consider that the moving 

image is an object that needs to be rotated and / or translated so that there is a 

satisfactory match with the still image. That is, this type of register uses global 

transformation. The deformable registration, on the other hand, obtain this 

correspondence through some localized deformations. This in turn uses local 

transformation. 

Registration is an essential process in several application areas linked to 

medical imaging. One common application is image-guided surgical procedure 
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[119], in which the registration of preoperative images and images obtained during 

surgery is of fundamental importance for the location of the pathology and the 

junction of different types of examinations, allowing you to group complementary 

information into one image. In addition, it has been used in segmentation, diagnosis 

and also in the temporal analysis of diseases, in which there is variation of patient 

positioning, requiring an alignment between images to optimize algorithms, among 

others. 

2.3.1. Rigid registration 

The applications of the rigid registration are simple ones which are 

summarized only by operations of rotation and translation, so that the moving image 

is not deformed, but placed in the same fixed image coordinate system. 

2.3.1.1. Image Transformation Function 

More formally, the transformation of coordinates of a moving image, M(x), 

into the coordinates of a fixed image, F(x), is given by Equation 7. 

𝑥′ = 𝑇(𝑥) = 𝑅𝑥(Ɵ𝑥)𝑅𝑥(Ɵ𝑥)𝑅𝑦(Ɵ𝑦)𝑅𝑧(Ɵ𝑧)𝑥 + 𝑡                      (7) 

where Rx, Ry e Rz are the rotational matrices around the x, y and z axis respectively, 

considering an angle Θ and t is the translation vector. The rotation matrices are 

represented by Equations 8, 9 and 10. 

𝑅𝑥(Ɵ𝑥) = (
1 0 0
0 cos Ɵ𝑥 −sin Ɵ𝑥

0 sin Ɵ𝑥 cos Ɵ𝑥

)                                       (8) 

𝑅𝑦(Ɵ𝑦) = (

cos Ɵ𝑦 0 sin Ɵ𝑦

0 1 0
−sin Ɵ𝑦 0 cos Ɵ𝑦

)                                       (9) 

𝑅𝑦(Ɵ𝑦) = (
cos Ɵ𝑧 −sin Ɵ𝑧 0
sin Ɵ𝑧 cos Ɵ𝑧 0

0 0 1
)                                     (10) 

2.3.1.2. Image Interpolator 

When the pixels of an image are transformed from one space of the image 

to another space, they may fall into positions that are not exactly a valid location in 

matrix of the image. Therefore, there might be some “empty spaces” in this matrix 

that must be estimated. This is estimation is achieved by using image interpolation 

of the transformed pixels. 

The choice of the interpolation method can influence the smoothness of the 

metric of similarity space. Some of most common methods for interpolation in 
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registration context are the linear, b-spIine, and nearest neighbor. In the case of this 

thesis, it is used linear interpolation.  

Linear interpolation is commonly used because it is simple to understand 

and implement and is efficient in several problems. It is ideal to use it when there 

are few points to be estimated. In its operation, linear interpolation traces a line 

segment between two desired points and calculates its equation. Through this 

equation it is possible to estimate values between the extreme points of the segment, 

based on their location.  

In relation to the images, linear interpolation traces a line segment between 

each pair of neighboring pixels (or voxels). Interpolation uses this segment to 

estimate values between neighboring pixels, which are the end points of the 

segment. This estimation is done based on the distance between the endpoints and 

their values. An interpolated pixel found exactly in the center of straight lines, for 

example, has a value equal to the arithmetic mean of the pixels of the endpoints. 

Mathematically, linear interpolation can be defined as follows: being an 

interval [x0, x1] and the values f0 and f1 for the extreme points of the function f(x), 

we obtain the interpolator polynomial defined in Equation 11. 

𝑓(𝑥) = 𝑓0 + [
𝑥−𝑥0

𝑥1−𝑥0
] (𝑓1 − 𝑓0)                                 (11) 

2.3.1.3. Images Metric of Similarity 

The metric is used by the optimizer to quantitatively evaluate the 

transformation parameters. Depending on the optimization method, some 

derivatives of the metric of similarity are determined as a function of the 

transformation parameters. The most common similarity metrics are quadratic 

mean, normalized correlation, and mutual information. 

The quadratic mean is given by Equation 12. Given an N number of points 

in the image, the quadratic mean is the sum of the square of the difference between 

the intensity value of the movable image M, interpolated at point a: after 

transformation T, by value of intensity at point x in the fixed image F. As can be 

seen, the metric has some special characteristics, such as the simplicity of being 

calculated and the amplitude of the radius of variation. Its optimal value is reached 

when it becomes as close as possible to zero. 

𝐸(𝑥|𝐹, 𝑀, 𝑇) =
1

𝑁
∑ (𝐹(𝑥𝑖) − 𝑀(𝑥𝑖

′))
2𝑛

𝑖                          (12) 

2.3.1.4. Registration Optimizer 

The optimizer seeks for the transformation parameters that produce the best 
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alignment between the fixed and moving images based on the similarity metric. The 

most used methods are descending gradient, the regular step descending gradient, 

the quasi-Newton, among others. 

In this thesis it is used a variant of the descending gradient named steep 

descending gradient. It seeks to minimize an objective function. In this thesis this 

function is mean square error (EMQ). 

The method starts from a starting point xo and then the gradient is calculated 

at that point. As the gradient is the direction of greatest variation for EMQ, the new 

point a is added with the negative of the gradient. In addition, a learning rate a is 

used to multiply the gradient obtained by limiting the size of the starting point 

offset. The result of the product is called a step or step and can be seen in Equation 

13, which has the value of x in an iteration k. 

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝛻𝐸𝑀𝑄(𝑥𝑘)                                       (13) 

In this work, the rigid registration was used to align the volumes of T1 and 

FLAIR images of the same patient. With this alignment, it is possible to combine 

the information from the exams at the voxel level to assist in detecting the WML in 

subsequent steps. 

2.4. Artificial Neural Networks (ANNs) 

The study of the brain in computation is interesting for enabling the 

development of biologically inspired information processing models, such as 

Artificial Neural Networks (ANNs). The RNAs represent an attempt to imitate the 

principles of brain functioning and apply them in computation models. ANN tries 

to simulate brain abilities such as adaption and self-organization, achieved through 

experience and/or learning, and high performance through parallel processing. 

ANNs may also be defined as mathematical models that use a collection of 

simple computational units, called artificial neurons interconnected in a network. 

These models are commonly used in the pattern recognition task. 

The works proposed in [124] were the first work involving ANNs and their 

peculiarities. According to Hafemann [120], the motivation for McCulloch and Pitts 

[124] to study neural networks was the fact that the human brain was superior to a 

computer in many tasks, an assertion that still remains today for tasks such as 

recognition of objects and faces, despite enormous advances in processing speed in 

modern computers. 

2.4.1. Artificial neuron 

Artificial neuron is the basic unit of an ANN and is used for building more 

DBD
PUC-Rio - Certificação Digital Nº 1412732/CA



27 

 

 

 

powerful models. Explaining in a simple way, an artificial neuron is an element that 

receives signals and performs a weighted sum of them and that produces an output, 

according to an activation function. An artificial neuron can be expressed in 

mathematical terms by Equation 14. 

𝑓(𝑥) = σ(∑ 𝑥𝑖𝑤𝑖 + 𝑏𝑛
𝑖=1 )                                         (14) 

where xi is the input i, wi is the weight associated with the input i, b is the term bias 

and σ is the nonlinear function called activation function.  

An artificial neuron implements this activation function as nonlinear 

function given its inputs, to provide an output. Some activation functions, which 

are commonly used in neuron models, are illustrated in Figure 2. 

 

Figure 2: Activation functions. (a) sigmoid; (b) signal; (c) hyperbolic; (d) 

saturation. 

 

Krizhevsky et al (2012) proposed a new and simple nonlinear function, 

called ReLU and, according to them, it converges up to 6 times faster than ANNs 

which use the hyperbolic tangent function. This function is presented in Equation 

15. 

 𝜎(𝑥)  =  𝑚𝑎𝑥(0, 𝑥)                                        (15) 

2.4.2. Multilayer Perceptron (MLP) 

According to Hornik et al [125], the Multilayer Perceptrons (MLP) are 

universal approximators, that is, they can approach any measurable function to any 

desired degree of precision. 

MLP is a very used ANN architecture. Basically, the MLPs are composed 

of an initial input layer, followed by one or more hidden / hidden layers, and the 

last layer would be the output of the network. Each layer is fully connected to its 

adjacent layer and produces an output vector according to the vector of the previous 

layer.  

In order to "learn", the MLP passes in an inactive process of weight 

adjustments in the network connections. In this process, the network is first 
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stimulated by the input information. An error is then calculated by some error 

function, comparing network output with the expected output. Following, this error 

is used to readjust the weights in the network using some learning algorithm. This 

process is repeated a number of times. So, the objective is to minimize this error by 

iteratively adjust network weights using the learning algorithm. The universal 

learning algorithm used by MLP is the backpropagation. 

The output of each layer is calculated by applying the activation function of 

each neuron in all the neurons of the layer. Each neuron (except input ones) has a 

non-linear activation function.  Equation 16 describes the output of a layer. 

𝑦𝑙 = 𝜎(𝑊𝑙𝑦𝑙−1 + 𝑏𝑙)                                       (16) 

where yl is the output vector, Wl is the matrix of the weights assigned to each neuron 

pair of the layer l e l − 1, e bl is the vector of the bias term of each neuron of the 

layer l. 

2.4.3. Deep Learning 

The depth of a neural network architecture refers to the number of nonlinear 

operations that make up this network. While many successful applications have 

used “shallow” networks (up to 3 layers), the organization of a mammal's brain is a 

deep-sea architecture [121]. 

Techniques based in Deep Learning can be visualized as a multi i-layered 

graph permeated with learning rules that build knowledge from hierarchical 

concepts. In other words, deep learning algorithms automatically extract complex 

data representations and develop a layered, hierarchical architecture of learning and 

representing data, where higher-level (more abstract) features are defined in terms 

of lower-level (less abstract) features. The literature points as the main advantage 

of its use the exclusion of step of designing and extracting a particular hand-crafted 

set of good features for a specific problem, task that can consume a large time 

portion with extensive experiments [86, 87]. Still, the three steps of feature 

extraction, selection and classification can be performed within the optimization of 

the same deep architecture which reduces the workload in classification problems 

[88]. 

According to Hafemann [120], deep neural networks have been investigated 

for decades, but deep training networks have consistently produced poor results 

until very recently. It has been observed in many experiments that deep nets are 

more difficult to train than “shallow” nets, and that deep nets often get trapped in 

apparent local minima when network parameters start randomly.  However, Cireşan 

et al. [122] demonstrate that properly trained deep neural networks can achieve 

better results in many tasks. 
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According to Hafemann [120], the best published results for image 

classification use a type of architecture called the convolutional neural network. 

2.4.4. Overfitting and Dropout 

Deep neural network, with many parameters, are very powerful machine 

learning models. They can learn complicated relationships between their inputs and 

outputs. However, overfitting is a serious problem in such networks. When the 

amount of training data is limited, these complicated relationships can be generated 

because of sampling noises. These relationships, then, will exist in the training set, 

but not in the test set, which causes overfitting.  

Many methods have been developed to reduce overfitting. One of the most 

famous are dropout. Dropout is a regularization applied to large neural networks, 

where each unit of a layer binds to all the units of the next layer. This simple 

technique was shown to reduce overfitting in neural networks [123]. One way to 

regularize a model and prevent overfitting would be to calculate the mean of the 

predictions of all possible parameter configurations, weighing each configuration 

by its posterior probability based on the training data. However, this is generally 

not feasible. With large neural networks, averaging the results of many separately 

trained networks is very expensive because it would require a very large amount of 

computation. 

For a combination of models to be effective, the individual models must be 

different from one another. They must have different architectures and / or be 

trained with different datasets. Training many different architectures is difficult 

because finding optimal parameters for each architecture is a difficult task and 

training each large network requires a lot of computation. In addition, large 

networks typically require large amounts of training data. Because there will be 

multiple networks, even more data will be needed, and it may not be possible to 

divide that data into sufficiently large subsets for each of those networks. Yet even 

if it is possible to train many different large networks, using them all in the test is 

impractical in applications where a rapid response is important. 

Dropout is a technique that addresses these issues. It avoids overfitting and 

provides a way to approximately combine many different neural network 

architectures efficiently. The idea is to temporarily remove hidden and visible 

drives in a neural network, along with all your inbound and outbound links. This 

process is represented in Figure 3. The choice of which drives will be removed is 

random. A simple way would be to keep each unit with a fixed probability p 

independent of other units. 

DBD
PUC-Rio - Certificação Digital Nº 1412732/CA



30 

 

 

 

 

                                                            (a)                                                                                (b) 

Figure 3: Illustration of the use of dropout in a neural network. (a) represents a 

common neural network with two intermediate layers and (b) represents a "net" 

network resulting from the dropout applied in (a). Source: [123]. 

2.4.5. Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNN) is type of deep learning that 

achieved great results in image classification tasks. In general, the CNN consists 

mainly of convolutional layers, pooling (downsampling) layers, and fully-

connected layers. The convolutional layers have trainable filters that are applied 

throughout the patch. Pooling layers are non-linear downsampling layers. The last 

layers of the network are fully-connected layers. The number of input neurons for 

the fully connected layers is defined by the number of pixels resulting from the 

layer prior to it. Since CNN are deep networks, it is also common to use dropout to 

prevent overfitted models, which are common in complex networks. An example 

of a CNN is shown in Figure 4. 

Two major advantages can be highlighted from CNN: (1) large learning 

capacity, it is, make strong and mostly correct assumptions about the nature of 

images (namely, stationarity of statistics and locality of pixel dependencies) and (2) 

compared to standard feedforward neural networks with similarly-sized layers, it 

has much fewer connections and parameters and so they are easier to train [90].  

There are four key ideas behind CNN that take advantage of the properties 

of natural signals: local connections, shared weights, pooling and the use of many 

layers. Units in a convolutional layer are organized in feature maps, within which 

each unit is connected to local input images in the feature maps of the previous layer 

through a set of weights shared called filter bank. The result of this local weighted 

sum is then passed through a non-linearity [91]. The pooling function replaces the 

output of a unit at a certain location with a summary statistic of the nearby outputs. 

Popular pooling function include the maximum or the average of a rectangular 
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neighborhood, the L2 norm of a rectangular neighborhood, or a weighted average 

based on the distance from the central pixel [92]. Theses stages of convolution, non-

linearity and pooling are stacked into two or more layers, followed by more fully-

connected layer based in backpropagating gradients like multi-layer perceptron 

network. Thus, CNN consist of many convolutional layers, interspersed with 

pooling layers that reduce the dimensionality of the input signal, and usually a few 

fully connected layers and a final classification layer. The convolutional layers in 

such networks can be thought of as a feature extraction subsystem, not designed or 

selected by algorithm developers, but learned specifically for the task at hand during 

the training process [87]. 

 

Figure 4: Example CNN Architecture. Source: [120]. 

 

The characteristics are extracted from one layer to another of the network, 

where a neuron in the current layer connects to a local receptive field in the previous 

layer. In this way, the characteristics are combined sequentially to extract higher-

level characteristics.  

2.4.5.1. Convolution Layer 

The convolution layers are composed of trainable filters that are applied 

throughout the input image. For each filter, a neuron is attached to a subset of 

neuron from the anterior layer. For example, an image as input, the filters define a 
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small area (3x3, 5x5, 7x7 pixels) and each neuron is connected only to neurons near 

the prior layer. The weights are shared between the neurons, causing the filters to 

learn the frequent patterns that occur in any part of the image. Figure 5 illustrates 

how convolution occurs in an image. 

 

Figure 5: Convolution layer illustration. Source: [120]. 

 

Each workable filter is applied individually to each input image generating 

several feature maps, meaning each filter is responsible for detecting one type of 

feature in the image. 

2.4.5.2. Downsampling layer 

According to Hafemann [120], the downsampling (or subsampling or 

pooling) layers implement a non-linear solution reduction function to reduce 

dimensionality and capture small image invariance. 

In the subsampling layer there is a reduction of the spatial resolution of the 

characteristic maps and in which the invariant characteristics of the displacements 

and distortions will be selected [113]. A much-used type of subsampling is shown 

in Figure 6. 

 

Figure 6: Illustration of the subsampling layer. Source: [120]. 

 

The type of subsampling shown in Figure 6 is known as maximum 

activation (maxpooling), where only the highest intensity pixel of the previous 
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receptive field is maintained, that is, in a 2x2 mask with 4 values, only the highest 

pixel value among them will remain in the current image. 

2.4.5.3. Fully connected layers 

At the termination of convolution and subsampling layers sequences that 

have the task of extracting features from the image, the pixels of all feature maps 

of the previous layer are given as input to the fully connected layers, which in turn 

are responsible for the classification of patterns, like MLP. 

In this thesis, CNN is used to classify the candidate regions as WML and 

non-WML. 

2.5. Validation Metrics 

Validation metrics are metrics that are used to quantitatively evaluate the 

effectiveness of a classification model. Through these metrics it is possible to 

compare models generated from different algorithms or from same algorithms with 

different parametrization. Therefore, they are essential in searching the best models 

when developing a method or tuning its parameters. Also, they are used to compare 

and rank results from different works, so they are the judges that establish the state 

of art.  

For calculating the validation metrics, the classification model is first used 

for predicting the classes of a set of samples. This set of samples is named test set 

and their actual classes are known a priori. The classes predicted by this model for 

each sample are then compared with their actual classes. So, the validation metrics 

are calculated using this comparison of predicted classes and actual classes. 

To validate the methods proposed in this thesis it is used the following 

metrics: sensitivity, specificity, accuracy. They are described respectively in 

Equations 17, 18 and 19. 

𝑠𝑒𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                (17) 

𝑠𝑝𝑒 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                (18) 

𝑎𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                          (19) 

where: 

• TP is the number of True Positives (positive samples classified as 

positive samples); 
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• TN is the number of True Negatives (negative samples classified as 

negative samples); 

• FP is the number of False Positives (negative samples correctly as 

positive samples); 

• FN is the number of False Negatives (positive samples classified as 

negative samples); 

Sensitivity measures the ability of the model to accurately predict the 

presence of one condition. In our case, it measures the percentage of WML regions 

that are correctly classified as WML regions. 

Specificity measures the ability of the model to accurately predict the 

absence of the condition. In our case, it measures the percentage of non-WML 

regions that are correctly classified as non-WML regions  

Accuracy is the weighted mean of sensitivity and specificity. So, it measures 

the ability of the model to accurately predict both presence and absence of one 

condition. In our case, it measures the percentage of regions that are correctly 

classified as their actual classes, be it WML region or non-WML region.
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3. Methods 

In this chapter, it is shown the four proposed methods. The first two methods 

are applied in the context where there is only one volume of modality FLAIR 

available for each patient. The last two methods are applied in the context where 

there are two volumes, one of modality FLAIR and other of modality T1, for each 

patient. These methods are explained in more details in next sections. 

3.1. Method 1 

The first method for WML detection uses only FLAIR MRI. It is divided 

into four steps as described in Figure 7. In brief, the first step, image acquisition, 

details the used materials. In the second step, image preprocessing, the 

preprocessing is performed for skull stripping and image enhancement. In the third 

step, candidates segmentation, the SLIC0 algorithm is applied in the image for 

segmenting WML and non-WML regions. Lastly, the fourth step, candidates 

classification, the convolutional neural network is trained using the patches 

generated from segmented regions and, at the end, those regions are classified. The 

next subsections explain in more detail these steps. 

 

Figure 7: Method using only FLAIR MRI. 

3.1.1. Image Acquisition 

The MRI database used in this work is private and was provided by a 

diagnosed medical company called DASA [141]. It is composed of 93 cases of 

FLAIR MRI, obtained from different MRI devices using different parameters. All 

images were extracted in the axial plane. Each slice has dimensions around 
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500×500, with each volume having between 20 and 30 slices. The slice spacing 

varies between 4 and 5 mm. 

In all database cases, WML of different natures are found in the white matter 

of the brain. In total, 4499 WML distributed among the 93 cases are found, with 

some containing less than 10 WML while others containing more than 100 WML. 

Therefore, this database can be considered quite heterogeneous, which helps to 

validate the generality of the proposed method. 

The images were gathered with support of radiologists. From 93 images, 40 

were marked with help of the specialist, using a software developed specially for 

this purpose (Appendix A). The other images, however, were used just for training, 

so the test results are reliable. The specialist was instructed to avoid marking WML 

with diameter smaller than 1mm since they are medically irrelevant. 

3.1.2. Image Preprocessing 

This section seeks to improve the images so that the next steps can be 

performed more efficiently. Following, the subsections are explained. 

3.1.2.1. Skull Stripping 

Head MRI includes not only brain tissue, but also other tissues present in 

patient’s head and neck. So, one good approach is to remove them a priori to 

emphasize the brain. The literature presents several algorithms for this purpose 

[104–110]. Probably the most used tool is the Brain Extraction Tool (BET), 

developed by Smith et. al. [110]. However, in this work, we used the brain 

segmentation algorithm of Bauer et. al. [111], because it is simpler, less time-

consuming and particularly effective in brain MRI that presents WML. The result 

of this segmentation is illustrated in Figure 8. 

 

                               (a)                                                              (b) 
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Figure 8: Brain segmentation in FLAIR MRI. (a) FLAIR MRI before segmentation. 

(b) FLAIR MRI after segmentation. 

3.1.2.2. Histogram Matching 

Since the images were obtained from different devices and with different 

acquisition configurations, similar regions of the brain may have very different 

intensities from patient to patient. This distinction can disrupt an eventual 

comparison of texture features of brain regions. To alleviate this kind of issue, 

Histogram Matching [112] algorithm is commonly applied, using a single MRI 

volume of the database as a reference for all others. Figure 9 illustrates its 

application. 

 

                  (a)                                        (b)                                        (c) 

Figure 9: Histogram Matching. (a) FLAIR MRI used as reference. (b) FLAIR MRI 

with histogram to be adjusted. (c) FLAIR MRI with histogram adjusted based in 

(a). 

3.1.3. Candidates Segmentation 

At this step, the WML candidates will be segmented. For this, it is used the 

SLIC0 algorithm (Subsection 2.2.1.2). This algorithm groups nearby sets of 

neighboring pixels based on spatial distance and intensity. A group of pixels is 

called a superpixel. Figure 10 shows the result of the SLIC0 applied to a slice of the 

brain. Superpixels formed on regions outside brain are disregarded. 

The algorithm used in this case is 2D, applied slice by slice. It was preferred 

to apply it this way because the spacing between slices is much greater than in the 

other axis. This would degrade the formation of supervoxels if applied in 3D, so 

that 2D results are much better. In addition, the slice spacing is also large enough 

that most of the WML were present in only one slice. The only parameter of this 

algorithm is the desired number of superpixels. 
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                                   (a)                                                       (b) 

Figure 10: SLIC0 applied in FLAIR MRI. (a) Original FLAIR MRI Slice. (b) 

FLAIR MRI slice after SLIC0 execution. 

 

It was empirically observed that, for the dimensions and spacing of the 

database images, 3500 superpixels per slice (including those located at the 

background of the image) would be a reasonable amount. Doing so, the superpixels 

have their dimensions like a microangiopathy or other type of small WML. This 

also minimizes the chances of a superpixel originally assigned to a small WML 

being too large that it could add pixels beyond the WML. In contrast, larger WML 

could be composed by more than one superpixel. 

3.1.4. Candidates Classification 

After segmentation of the candidates, the next step is to classify them. The 

candidates (superpixels) are classified in WML regions or non-WML regions. For 

this, it is used the machine learning technique CNN (Subsection 2.4.5). Following 

it is explained in more details how the CNN input data were created and how the 

training and testing procedures were designed and executed. 

3.1.4.1. Generation of Patches 

Many machine learning techniques use attributes extracted from the images 

as input. In such cases, for good results, good attribute engineering is required so 

that they are representative enough to discriminate the image class. One of CNN’s 

advantages is that it does not need an explicit attribute extraction step. Instead, the 

neural network uses the image itself as input and attempts to implicitly extract the 

best attributes. 
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The candidates in this method are superpixels. Therefore, it is necessary to 

generate images (called patches, in CNN context) that represent them and that are 

suitable as inputs for CNN. A possible patch to represent a superpixel would be 

composed by pixels inside its bounding box. However, due to the resolution of the 

MRI, and the dimensions adopted for a superpixel, such patch would be too small, 

with few pixels. This would be particularly risky in a CNN architecture, where 

convolutions and downsamplings are applied and, consequently, there is a decrease 

in number of pixels.  

Also, a good patch should carry enough significative information to 

represent the candidate. Using larger input images would capture the neighborhood 

behavior of the WML. This is interesting because it is known that the tissue around 

the WML tends to have more hypointense values than the WML tissue itself, so 

capture such a characteristic can improve CNN performance. 

So, knowing that a patch should have a satisfactory number of pixels and 

should carry meaningful information to represent WML and non-WML regions, it 

was decided that a patch should be generated through the bounding box of the 

region composed by a superpixel and its neighbors superpixels. 

One of the requirements of CNN is that the patches have the same 

dimensions. However, this is not always done effectively, especially in cases where 

the patches are generated from segmentation algorithms, whose segmented regions 

may assume different dimensions. In the case of this proposed method, the use of 

SLIC0 superpixels help to overcome the problem of dimensions. Superpixels have 

similar dimensions and, consequently, their bounding boxes have similar 

dimensions. The small difference in dimensions is corrected by searching the 

largest bounding box from all superpixels neighborhoods in database. Then, the 

largest dimensions are used to generate all patches with the same size. 

The procedure to generate CNN patches is illustrated by Figure 11. 

 

Figure 11: Generation of CNN patches. (a) represents the superpixels of a slice of 

the brain. The superpixel marked by the number 1 is the one you want to generate 

DBD
PUC-Rio - Certificação Digital Nº 1412732/CA



40 

 

 

 

an patch on CNN. The superpixels marked by numbers 2 to 7 are their neighbors. 

(b) represents the bounding box of the superpixels marked by numbers 1 to 7 in (a). 

(c) represents the bounding box corrected using the largest dimensions of all 

bounding boxes from superpixels neighborhoods in database. (d) represents the 

patch generated from the pixels inside of the corrected bounding box. 

3.1.4.2. CNN Train and Test 

For the training and testing, the patches need to be divided into two groups: 

those who represent WML regions and those who represent non-WML regions. To 

define this, it is used the WML markings. A superpixel is a WML region if it has at 

least 10% of its pixels found in any WML marking. The Figure 12 illustrates how 

this procedure is done. 

 

                     (a)                                       (b)                                        (c) 

Figure 12: Selecting WML superpixels. The image (a) represents a slice with three 

WML, circled by their markings (red color). The image (b) represents the 

superpixels generated by applying the SLIC0 in (a). In image (c), superpixels 

having at least 20% of their pixels present in any of the markings of a WML of (b) 

are painted red. 

 

Figure 12 shows that there are superpixels that have pixels presented in 

some marking but are not considered a WML region. This happens because, 

empirically, it was observed that superpixels having less than 10% of their pixels 

present in some marking has more characteristics of non-WML region. Once you 

know which superpixels are WML regions, all other superpixels are considered 

non-WML regions. 

After dividing patches of WML and non-WML regions, it is now necessary 

to separate the training and validation databases for the training step and training 

and test databases for the test step. For each of these databases, patients MRI were 
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selected randomly and patches were stored. However, for test and validation 

datasets, the MRI were randomly selected from those marked by the specialist. 

Finally, after defining the datasets, it is necessary to define the CNN 

architecture to submit the patches. The best configurations of the network were 

selected after many training sessions. In each session, a new configuration of the 

network is experimented. The generated model of each session is used to classify 

the validation database. Finally, the configuration that generated the model that 

achieved the best results is selected. Then, the selected configuration is used to train 

the training database in the test step. The result of this training produces the final 

model. This model will be used to classify superpixels as WML regions or non-

WML regions through their respective patches from the test database. 

All training sessions, however, shared some parameters. It was used 100 

epochs as a stopping criterion, learning rate value 0.001, momentum value 0.9 and 

input batch of 64 images. As for the patch dimensions, they depend on the 

dimensions of the bounding of superpixels neighborhoods, as explained in 

Subsection 3.1.4.1. For convenience, the calculated dimensions of the patches are 

45×45 pixels. 

The network that resulted in the best model consists of the following 

sequence of layers: (1) three convolutional layers, (2) one pooling layer, (3) other 

three convolutional layer, (4) other pooling layer and the fully-connected layers 

(MLP) composed of: (5) one input layer, resulting from the output of (4) flattened 

in a 1D vector, (6) one hidden layer and (7) an output layer.  

Knowing the sequence of layers of this network, their internal configuration 

are as follow: (1) use 20 filters of size 3 × 3 and ReLU activation function; (2) uses 

maxpooling function of size 2×2 and ReLU activation function, (3) use 50 filters of 

size 3×3 and ReLU activation function; (4) uses maxpooling function of size 2×2 

and ReLU activation function; (5) connects with (6) using a dropout function with 

0.5 chance of activation; (6) contains 500 neurons and ReLU activation function 

and (7) contains two neurons and uses a softmax function giving the probability of 

the input to belong to either class.  

This architecture is illustrated in Figure 13. 

 

Figure 13: Architecture of the CNN of the first method. 
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3.2. Method 2 

The second proposed method for WML detection uses only FLAIR MRI 

such as the Method 1 (Section 3.1). It is divided into four steps as described in 

Figure 14. The first three steps are the same from the Method 1. In fourth step, 

however, it is proposed the use of a parallel CNN which uses multiscale patches as 

input data. The next subsections explain in more detail the fourth step of this 

method. 

 

Figure 14: Method using only FLAIR MRI. 

3.2.1. Candidates Classification 

After segmentation of the candidates, the next step is to classify them. 

Following, it is explained in more detail how the CNN entries were created and how 

the training and testing procedures were designed and executed. It is also explained 

how parallel CNN with multiscale patches approach works and its advantages. 

3.2.1.1. Generation of Multiscale Patches 

After superpixels segmentation, it is necessary to generate images that 

represent them in CNN. For this generation, we first calculate the centroid for each 

candidate superpixel. This centroid is calculated using the Equations 20 and 21. 

𝑥𝑐 = ∑ 𝑥𝑖
𝑛
𝑖=1 /𝑛                                              (20) 

𝑦𝑐 = ∑ 𝑦𝑖
𝑛
𝑖=1 /𝑛                                              (21) 

where: 

DBD
PUC-Rio - Certificação Digital Nº 1412732/CA



43 

 

 

 

• xc is the x coordinate of the centroid of the superpixel; 

• yc is the y coordinate of the centroid of the superpixel; 

• xi is the x coordinate of the ith pixel of the superpixel; 

• yi is the y coordinate of the ith pixel of the superpixel; 

• n is the number of pixels. 

Once the centroid of each candidate superpixel is calculated, it is generated 

three patches with different sizes, but all centered in superpixel centroid. These 

patches have sizes 42 x 42 pixels, 84 x 84 pixels and 126 x 126 pixels, respectively, 

so the second patch has two times the size of the first patch and the third patch have 

three times the first patch.  

The choice of patches sizes was done empirically. However, we tried to 

create patches that are large enough for our CNN architecture but small enough to 

avoid meaningless background pixels or pixels outside image. After multiscale 

patches were created, the largest ones are resized so that they have the same size of 

the smallest (42 x 42 pixels). The procedure to generate multiscale patches is 

illustrated by Figure 15. 

 

Figure 15: Generation of multiscale patches. The red dot in (a) represents the 

centroid of a superpixel. In (b), it is shown the three multiscale patches centered in 

this centroid. In (c), the largest patches are resized, so they have the same size of 

smallest 

3.2.1.2. Parallel CNN Train and Test 

After generating the patches for each superpixel, it is now necessary to 

separate patches as patches WML and non-WML regions and define the databases 

for training and test steps. This is all done such as Subsection 3.1.4.2, but this time 

there are three multiscale patches for each superpixel, as explained in Subsection 

3.2.1.1. 

The network used in this method is a parallel CNN. A Parallel CNN can be 
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defined as a CNN that contain two or more independent paths of convolution and 

downsampling layers. Each path should receive a different patch as input. However, 

the last layers of these paths are merged in a single input layer for a MLP. The main 

idea of a Parallel CNN is to extract features of different patches that represents the 

same object independently but combine these features as an input for a more robust 

training. 

One of the limitations of patch-based CNNs is that patches do not carry 

spatial information. So, the CNN relies only of the local pixels that are present in 

the patch and do not see around it. In other words, CNN does not have a peripheral 

vision like human eyes.  

When the human eye is focusing on a certain point in an image, this point is 

clearer and carries more meaningful information. However, the points around are 

also captured and also provides useful information of the whole context, although 

they are less relevant and more unclear than the point we are focusing. It is also 

perceptive that the more a point is distant from the point the eye is focusing, the 

more unclear this point is.  

The idea behind a Parallel CNN that uses multiscale patches is to work more 

like the human vision. So, like a human eye, it seeks to aggregate more spatial 

awareness of the candidate while focusing more on pixels that are nearer the center 

of the candidate. As explained, the smallest multiscale patch is not reduced. So, it 

contains all pixels from the image, not losing any information. On the other hand, 

the second larger patch becomes more unclear or “blurred” since it is reduced, 

losing information. This also happens to the largest patch, but it loses even more 

information due to the greater reduction. So, it is expected that parallel CNN with 

multiscale patches works better than a common CNN. However, it is also expected 

it is much slower than common CNN due to the increased number of parameters. 

Training sessions were executed to find the best parallel CNN parameters. 

All training sessions, however, shared some parameters. It was used 100 epochs as 

a stopping criterion, learning rate value 0.001, momentum value 0.9 and input batch 

of 64 images. 

The architecture that resulted in the best model is as follows. Each path of 

convolution and downsampling layers consists of the following sequence of layers: 

(1) three convolutional layers, (2) one pooling layer, (3) other three convolutional 

layer, (4) other pooling layer. The outputs layers of these paths are merged and 

flattened to be the input layer of the MLP. MLP is composed of the following layers: 

(5) one input layer, resulting from the output of (4) merged and flattened in a 1D 

vector, (6) one hidden layer and (7) an output layer.  

Knowing the sequence of layers, their internal configuration are as follow: 

(1) use 20 filters of size 3 × 3 and ReLU activation function; (2) uses maxpooling 
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function of size 2×2 and ReLU activation function, (3) use 50 filters of size 3×3 and 

ReLU activation function; (4) uses maxpooling function of size 2×2 and ReLU 

activation function; (5) connects with (6) using a dropout function with 0.5 chance 

of activation; (6) contains 500 neurons and ReLU activation function and (7) 

contains two neurons and uses a softmax function giving the probability of the input 

to belong to either class. This architecture is illustrated in Figure 16. 

 

Figure 16: Architecture of the parallel CNN with multiscale patches. 

3.3. Method 3 

The third proposed method for WML detection uses pairs of FLAIR and T1 

MRI. It is divided into four steps as described in Figure 17. Some steps are the same 

as the Method 1 (Section 3.1), but this time they consider both FLAIR and T1 MRI. 

In brief, the first step, image acquisition, details the materials used. In the 

second step, image preprocessing, the preprocessing is performed for better use and 

compare of the T1 and FLAIR images. In the third step, candidates segmentation, 

the SLIC0 algorithm is applied to the FLAIR images for segmenting WML and 

non-WML regions. Lastly, the fourth step, candidates classification, the CNN is 

trained using the pairs of patches generated from superpixels of T1 and FLAIR MRI 

combined. The next sections explain in more detail these steps. 

3.3.1. Image Acquisition 

The MRI database is private and was provided by DASA such as the first 

method database (Section 3.3.1). Actually, this database is a subset of the first 

method database, composed only by the patients who contains both FLAIR and T1 

MRI. So, it is composed of 73 cases of pairs of FLAIR and T1 MRI. The FLAIR 

images were acquired in axial plane while T1 images were acquired in sagittal 
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plane. The images of this database were obtained from different magnetic resonance 

imaging devices using different parameters. Each slice has dimensions around 

500×500, with each volume having between 20 and 30 slices. The slice spacing 

varies between 4 and 5 mm. 

 

Figure 17: Method using T1 and FLAIR MRI. 

 

In all database cases, WML of different natures are found in the white matter 

of the brain. In total, 3831 WML distributed among the 73 cases are found, with 

some containing less than 10 WML while others containing more than 100 WML. 

Therefore, this database can be considered quite heterogeneous, which helps to 

validate the generality of the proposed method. 

The images were gathered with support of radiologists. From 73 images, 25 

were tagged with help of the specialist, using a software developed specially for 

this purpose (Appendix A). The other images, however, were used just for training, 

so the results can be considered reliable. The markings are the same from the first 

database (Section 3.3.1). 

3.3.2. Image Preprocessing 

This section seeks to improve the images so that the next steps can be 

performed more efficiently. Following, the subsections are explained. 
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3.3.2.1. Skull Stripping 

As explained in Subsection 3.1.2.1, it is necessary to segment the brain, 

eliminating other elements of the MRI. Here, it is also used the Bauer et al algorithm 

[111], but it is applied in both T1 and FLAIR MRI. Figure 8 (Subsection 3.1.2.1) 

shows the result of the brain segmentation in a FLAIR MRI and Figure 18 shows 

the result of the brain segmentation in a T1 MRI. 

      

                            (a)                                                                (b) 

Figure 18: Brain segmentation. (a) T1 MRI before segmentation. (b) T1 MRI after 

segmentation. 

3.3.2.2. Spacing and Plane Correction 

Since T1 and FLAIR MRI were acquired with different protocols, there are 

differences in their voxels spacing and planes. As explained in Subsection 3.3.1, 

FLAIR MRI are in axial plane and T1 MRI are in sagittal plane, but for voxel-wise 

analysis between then, it is desired they are in same plane and have the same 

spacing. Knowing that, it was decided to resample T1 images to axial plane for 

better comparison. The voxels spacing of T1 images were also corrected to match 

with the FLAIR images using linear interpolation (Subsection 2.3.1.2). The result 

of this transformation is showed in Figure 19. 

3.3.2.3. Image Alignment 

Next, to reduce the area of study of the images and thus reduce 

computational time of the next steps, they were cropped to their segmented brain 

3D bounding box as shown in Figure 20. This operation was applied in both FLAIR 

and T1 images. 
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                               (a)                                                             (b) 

Figure 19: Resampling T1 MRI to axial plane. (a) T1 MRI before resampling. (b) 

T1 MRI after resampling. 

 

 

Figure 20: Cropping images to their segment brain 3D bounding box. (a) T1 slice 

before cropping. The red lines in (a) represents the 3D bounding box of the brain 

on that slice. (b) T1 slice after cropping. 

 

Once images are composed only by brain voxels and are also in same plane, 

spacing and dimensions, it is now necessary that their voxels are matched in the 

same coordinates for voxel-wise comparison. For that, it is used 3D rigid 

registration (Subsection 2.3.1). T1 images are used as fixed images while FLAIR 

images are used as moving images. The Figure 21 illustrates a registration. 

3.3.2.4. Histogram Matching 

The next step is to normalize the intensity of the images. As explained in 

Subsection 3.1.2.2, to alleviate the inhomogeneity among MRI histograms in a 
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database, the histogram matching algorithm is commonly used. However, in this 

subsection, it is applied in both T1 and FLAIR MRI. 

 

                   (a)                                         (b)                                          (c) 

Figure 21: Aligning T2 and T1 images using 3D rigid registration. (a) T1 slice. (b) 

T2 slice before registration. (c) T2 slice registered. The red lines in images helps to 

see the alignment before and after registration. 

3.3.3. Candidates Segmentation 

In this section, the WML candidates will be segmented using SLIC0, such 

as in Section 3.1.3. In this case, SLIC0 is only applied in FLAIR images since they 

are better to highlight tissue anomalies than T1 images. The resulting superpixels 

from FLAIR images are then used to label voxels in both T1 and FLAIR images. 

Since T1 and FLAIR images are aligned by rigid registration, it is expected that 

superpixels correspond to the same tissue areas in both images. 

3.3.4. Candidates Classification 

After segmentation of the candidates, the next step is to classify them as 

WML regions or non-WML regions using CNN. Following, it is explained in more 

details how the CNN entries were created and how the training and testing 

procedures were designed and executed. 

3.3.4.1. Generation of Multimodal Patches 

Much like in Subsection 3.2.1.1, it was then decided that the CNN patches 

should be generated through the bounding box of the candidate superpixel and its 

neighbors superpixels. The difference here is that the patches are generated in pairs, 

one from FLAIR superpixels and other from T1 superpixels. This was possible 

because the FLAIR and T1 MRI were previously pre-processed, registered and 

shares the same superpixels grid. 

Such as in Subsection 3.2.1.1, the patches dimensions are also corrected to 
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be suitable to CNN. The procedure to generate CNN patches is illustrated by Figure 

22. 

 

Figure 22: Generation of multimodal patches. (a) represents the superpixels of a 

slice of the brain in FLAIR MRI. The superpixel marked by the number 1 is the one 

you want to generate an patch on CNN. The superpixels marked by numbers 2 to 7 

are their neighbors. (b) represents the bounding box of the superpixels marked by 

numbers 1 to 7 in (a). (c) represents the bounding box corrected using the largest 

dimensions of all bounding boxes from superpixels neighborhoods in database. (d) 

represents the patch generated from the pixels inside of the corrected bounding box. 

(e) represents the correspondent patch in a slice from the preprocessed T1 MRI 

which is aligned with FLAIR and shares the same superpixels grid. 

3.3.4.2. Parallel CNN Train and Test 

For the training and testing, the patches need to be divided into two groups: 

those with which they represent superpixels of WML and those representing 

superpixels of non-WML. This procedure is done using the markings like shown in 

Subsection 3.1.4.2. 

After generating all the patches of all patients, it is now necessary to separate 

the training and validation databases for the training step and training and test 

databases for the test step. For each of these databases, patients MRI were selected 

randomly and patches from their superpixels were generated. However, for 

validation and test databases, only MRI marked by the specialist were used. 

The training and test steps are done through a parallel CNN like in 

Subsection 3.2.1.2, but that uses multimodal patches: one from FLAIR MRI and 

other from T1 MRI. The idea is to extract features from both patches separately but 

combine then for more robust training.  

Training sessions were executed to find the best parallel CNN parameters. 

All training sessions, however, shared some parameters. It was used 100 epochs as 

a stopping criterion, learning rate value 0.001, momentum value 0.9 and input batch 

of 64 images. 
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The architecture that resulted in the best model is as follows. Each path of 

convolution and downsampling layers consists of the following sequence of layers: 

(1) three convolutional layers, (2) one pooling layer, (3) other three convolutional 

layer, (4) other pooling layer. The outputs layers of these paths are merged and 

flattened to be the input layer of the MLP. MLP is composed of the following layers: 

(5) one input layer, resulting from the output of (4) merged and flattened in a 1D 

vector, (6) one hidden layer and (7) an output layer.  

Knowing the sequence of layers of this network, their internal configuration 

are as follow: (1) use 20 filters of size 3 × 3 and ReLU activation function; (2) uses 

maxpooling function of size 2×2 and ReLU activation function, (3) use 50 filters of 

size 3×3 and ReLU activation function; (4) uses maxpooling function of size 2×2 

and ReLU activation function; (5) connects with (6) using a dropout function with 

0.5 chance of activation; (6) contains 500 neurons and ReLU activation function 

and (7) contains two neurons and uses a softmax function giving the probability of 

the input to belong to either class.  

Figure 23 illustrates the architecture of this parallel CNN. 

 

Figure 23: Architecture of the parallel CNN with multimodal patches. 

3.4. Method 4 

The fourth proposed method for WML detection uses pairs of FLAIR and 

T1 MRI. It is divided into four steps as described in Figure 24. The first three steps 

are the same as the Method 3 (Section 3.3), but here we use common CNNs with 

patches resulting from pixelwise comparison operations between correspondent 

FLAIR and T1 patches. Following, this fourth step of this method is explained in 

more details. 

3.4.1. Candidates Classification 

After segmentation of the candidates, the next step is to classify them as 

WML regions or non-WML regions using CNN. Following, it is explained in how 
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the CNN entries were created and how the training and testing procedures were 

designed and executed. 

 

Figure 24: Method using T1 and FLAIR MRI. 

3.4.1.1. Generation of Multimodal Patches 

Much like in Subsection 3.3.4.1, for each candidate it is generated a pair of 

patches from T1 and FLAIR MRI, since they are pre-processed, aligned and shares 

the same superpixels grid. However, these patches are not used together in a parallel 

CNN, like in section 3.3.4.1. Here, the pairs of patches are merged through 

pixelwise comparison operations to create new patches with combined information.  

Pixelwise comparison operations are operations performed at the pixel level. 

The operations used in this thesis are derived from the analysis of changes in aerial 

images for remote sensing [139], which have already been used effectively in 

medical imaging as well [140]. Therefore, this set was adapted to identify intensity 

differences in T1 and FLAIR MRI. From the operations described in [139], we used 

difference between images, image ratio and fuzzy XOR. 

The operation of difference between images aims to measure differences of 

pixels between two images by subtracting them. This operation is described by 

Equation 22. 

𝐼(𝑥, 𝑦) = 𝐼𝐹(𝑥, 𝑦) − 𝐼𝑇(𝑥, 𝑦)                                     (22) 

where: 
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• 𝐼𝐹(𝑥, 𝑦) is the pixel value of FLAIR MRI in coordinates x and y; 

• 𝐼𝑇(𝑥, 𝑦) is the pixel value of T1 MRI in coordinates x and y; 

• 𝐼(𝑥, 𝑦) is the pixel value resulting from difference between images; 

Like operation of difference between images, the operation of image ratio 

aims to measures differences between the pixels, but it uses the phase of the ratio 

between them. The phase indicates how similar the corresponding pixels are 

between the two images. This operation is described by Equation 23. 

𝐼(𝑥, 𝑦) = |arctan (
𝐼𝐹(𝑥,𝑦)

𝐼𝐹(𝑥,𝑦)
)|                                       (23) 

where 𝐼(𝑥, 𝑦) is the pixel value resulting from image ratio. Note that arctan is the 

arctangent function returning values in degrees, so that the more 𝐼𝑇(𝑥, 𝑦) and 

𝐼𝐹(𝑥, 𝑦) are dissimilar, the more arctangent value is next to 180 or -180 degrees, 

and de more similar they are, the more the arctangent value is close to 0. Since we 

are using absolute arctangent, the dissimilar values are next to 180 and similar next 

to 0. To avoid losing much information when converting the float degree values to 

pixel values for resulting image, we rescaled the values to interval 0 and the 

maximum value in DICOM standard. 

The fuzzy XOR operation uses the concept of the exclusive OR operator of 

fuzzy logic to transform the pixel value of images. The result of this method 

highlights different regions and makes the similarities less obvious. Equation 24 

shows how to calculate the fuzzy XOR operator. 

𝐼(𝑥, 𝑦) = max(𝐼�̅�(𝑥, 𝑦) ∗ 𝐼𝑇(𝑥, 𝑦), 𝐼�̅�(𝑥, 𝑦) ∗ 𝐼𝐹(𝑥, 𝑦))            (24) 

where 𝐼(𝑥, 𝑦) is the pixel value of the image resulting from the fuzzy XOR 

operation and 𝐼�̅�(𝑥, 𝑦) is a pixel value from some image a subtracted from value 1. 

In fuzzy XOR operation, the more different the pair of pixels is, the closer to 1 will 

be; and the more similar the pair of voxels, the closer to 0 will be its value. Note 

that before operation the values from T1 and FLAIR MRI are rescaled to interval 

of float values [0,1] and values resulting of the operation are rescaled to interval 0 

and the maximum value in DICOM standard. 

Figure 25 illustrates how patches resulting from pixelwise comparison 

operations are generated. 
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Figure 25: Generation of comparing patches. (a) represents the superpixels over a 

slice of a FLAIR MRI. The superpixel marked by the number 1 is the one you want 

to generate a patch. The superpixels marked by numbers 2 to 7 are its neighbors. 

(b) represents the bounding box of the superpixels marked by numbers 1 to 7 in (a). 

(c) represents the bounding box corrected using the largest dimensions of all 

bounding boxes from superpixels neighborhoods in database. (d) represents the 

patch generated from the pixels inside of the corrected bounding box and its 

correspondent in T1 MRI. (e) represents patches generated from pixelwise 

comparing operations between T1 and FLAIR patches from (d). 

3.4.1.2. CNN Train and Test 

After generating the patches for each superpixel, it is now necessary to 

separate patches as patches WML and non-WML regions and define the databases 

for training and test steps. This is all done such as Subsection 3.1.4.2, but this time 

there are three patches resulting from pixelwise comparison operations for each 

superpixel, as explained in Subsection 3.4.1.1.  

Each of these types of patches are submitted in an independent CNN. So, 

this time, there are three CNNs executing separately, one for patches resulting from 

difference of images operation, other one for patches resulting from image ratio 

operation, and the last one for patches resulting from fuzzy XOR operation. 

The architecture and training parameters of these three CNNs are the same 

the CNN from Method 1 (Subsection 3.1.4.2). They are illustrated in Figure 26. 
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Figure 26: Architecture of CNNs with comparing patches. 
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4. Results and discussion 

This Chapter will show the results obtained by applying the methods on the 

databases. These results will be discussed for a better understanding and compared 

with related works. 

4.1. Train, validation and test images 

First, it is necessary to understand how the MRI databases, specified in 

Subsections 3.1.1 and 3.3.1, were used. As explained in Sections 3.1, 3.2, 3.3 and 

3.4, on each method, the images of these exams were preprocessed, had candidates 

for WML regions computed and, for each candidate, CNN patches were generated. 

As explained in Subsections 3.1.4.1, 3.2.1.1, 3.3.4.1 and 3.4.1.1, the 

superpixels are divided into WML regions and non-WML regions using markings. 

Each WML marking is represented by one or more WML regions. Table 1 shows 

the relationship between the number of WML and WML regions from each of the 

91 patients of the first database. Table 2 shows the relationship between the number 

of WML and WML regions from each of the 73 patients of the second database. 

Next, the patches for WML and non-WML regions are generated and used 

in the training and test steps. For the first database, the exams were divided into 

three groups: 68 patients were separated for the training group, 10 for the validation 

group of the training and 15 for the test group. For the second database, the three 

groups are: 53 patients for the training group, 10 for the validation group of the 

training and 10 for the test group. Patients from each group were randomly selected, 

but for test and validation groups, only exams marked by specialist were used. 

In the training phase, it is used the patches from the training and validation 

groups. Considering patches of training group, it was decided to use only 10% of 

the patches of non-WML regions. This choice was done to reduce the computational 

time of training phase and for avoiding the unbalanced training, since there are 

much more non-WML regions than WML regions in MRI.  

The choice of which non-WML regions are used for training was done 

carefully, assuring that regions of whole brain were well represented in the training. 

This selection was done as follow: superpixels of all brain tissue were labeled such 

as they were sorted first from left to right and next from top to bottom. Once these 

superpixels are sorted, for each sequence of 10 superpixels of non-WML regions, 

the first one is maintained and the following nine are disregarded. The maintained 

superpixels representing non-WML regions are those whose patches were selected 

for training group. 

Considering the patches generated from validation group, all images of 
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lesion regions and non-lesion regions were selected. 

Table 1: Number of WML and regions of WML per patient in database 1. 

Patient WML 
WML 

region 
Patient WML 

WML 

region 
Patient WML 

WML 

region 

1 55 228 32 43 290 63 11 23 

2 9 17 33 40 241 64 3 4 

3 16 27 34 31 75 65 54 81 

4 26 47 35 106 544 66 41 88 

5 3 3 36 5 12 67 11 73 

6 114 336 37 35 168 68 6 14 

7 3 6 38 25 133 69 24 46 

8 6 13 39 179 1523 70 47 113 

9 112 439 40 6 16 71 43 108 

10 24 89 41 45 186 72 5 6 

11 122 360 42 87 218 73 23 41 

12 4 8 43 21 87 74 11 13 

13 27 43 44 91 329 75 89 333 

14 91 188 45 125 258 76 10 17 

15 36 206 46 179 406 77 179 437 

16 133 594 47 50 220 78 1 1 

17 18 96 48 9 11 79 32 219 

18 51 153 49 46 76 80 72 225 

19 7 23 50 21 26 81 36 334 

20 39 132 51 210 931 82 28 104 

21 69 129 52 4 6 83 7 32 

22 84 287 53 7 17 84 94 655 

23 203 903 54 34 71 85 14 106 

24 136 628 55 26 48 86 16 128 

25 7 11 56 33 86 87 10 42 

26 17 90 57 37 124 88 59 216 

27 180 646 58 11 27 89 42 435 

28 12 56 59 29 65 90 15 31 

29 110 268 60 140 407 91 50 716 

30 16 87 61 34 65 92 9 18 

31 1 1 62 11 17 93 6 41 

 

Table 3 shows the number of patients, WML, WML regions and non-WML 

regions from the training and validation groups in database 1. Table 4 shows the 

same information, but for database 2. 
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Table 2: Number of WML and regions of WML per patient in database 2. 

Patient WML 
WML 

region 
Patient WML 

WML 

region 
Patient WML 

WML 

region 

1 9 18 26 43 289 51 11 14 

2 16 26 27 40 226 52 11 23 

3 26 46 28 31 75 53 3 4 

4 3 3 29 106 552 54 54 79 

5 114 318 30 5 12 55 11 73 

6 3 6 31 35 158 56 42 106 

7 6 14 32 25 132 57 5 6 

8 112 433 33 177 1512 58 23 43 

9 122 363 34 6 16 59 11 14 

10 4 8 35 45 190 60 89 330 

11 27 43 36 86 227 61 10 19 

12 91 182 37 124 268 62 179 438 

13 133 598 38 178 415 63 1 1 

14 18 97 39 50 228 64 55 227 

15 7 24 40 9 13 65 24 87 

16 39 130 41 21 26 66 36 198 

17 69 136 42 4 5 67 204 899 

18 84 293 43 7 17 68 110 269 

19 136 653 44 34 71 69 21 82 

20 7 9 45 26 49 70 91 329 

21 17 92 46 34 72 71 208 951 

22 180 650 47 11 27 72 38 129 

23 12 56 48 29 61 73 41 88 

24 16 87 49 141 407 

25 1 1 50 34 61 

 

Table 3: Characteristics of the groups of images of the training step in database 1. 

Training step Train group Validation group 

Number of patients 68 10 

Number of WML 3181 825 

Number of WML regions 10942 3246 

Number of non-WML regions 120104 171356 

 

 

DBD
PUC-Rio - Certificação Digital Nº 1412732/CA



59 

 

 

 

Table 4: Characteristics of the groups of images of the training step in database 2. 

Training step Train group Validation group 

Number of patients 53 10 

Number of WML 1938 1065 

Number of WML regions 5933 4612 

Number of non-WML regions 89459 183474 

 

In the test step, the patches generated from the training and validation groups 

are merged into a single group, resultingww in a new training group composed of 

78 patients for database 1 and 63 patients for database 2. This group obeys the same 

criteria for selecting patches from the training group from training step.  

Considering the patches generated from the test group, all WML and non-

WML regions images were selected. 

Table 5 shows the number of patients, WML, regions of WML and regions 

of non-WML of the training and test groups of the test step. Table 6 shows the same 

information, but for database 2. 

Table 5: Characteristics of the groups of images of the test step in database 1. 

Test step Train group Test group 

Number of patients 78 15 

Number of WML 4009 490 

Number of WML regions 14195 3302 

Number of non-WML regions 137123 275580 

 

Table 6: Characteristics of the groups of images of the test step in database 2. 

Test step Train group Test group 

Number of patients 63 10 

Number of WML 3003 828 

Number of WML regions 10545 3259 

Number of non-WML regions 107615 164937 

4.2. Training step 

Training and validation patches were used to search for better CNN settings 

in each method. For this, training sessions were performed to compare various 

configurations of CNN. At the end of each training, the generated models were 
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stored. Then, these models were used to classify patches of the validation group. 

The results obtained in each model were compared and the model that obtained the 

best results was chosen. 

Table 7 shows the validation metrics obtained by applying the best model 

in the validation database for each method. In this table, Method 1, 2 and 3 

represents the methods explained in Sections 3.1, 3.2 and 3.3, respectively. Methods 

4.1, 4.2 and 4.3 represents the operations difference of images, image ratio and 

fuzzy XOR explained in Section 3.4. 

Table 7: Validation metrics of the training step. 

Train step Method 1 Method 2 Method 3 Method 4.1 Method 4.2 Method 4.3 

Sensitivity 80,60% 79,51% 74,81% 71,32% 69,27% 65,90% 

Specificity 97,61% 97,97% 96,82% 88,55% 87,67% 93,02% 

Accuracy 96,19% 96,43% 95,45% 87,48% 88,40% 91,33% 

4.3. Test step 

Once the best CNN settings have been defined, they can be used to classify 

the test patches.  

For generation of the test models for each method, the training and 

validation groups were joined in a new training group. These new groups are trained 

again using the best CNN settings found in the training step. The generated models 

of this procedure are then used to classify the test patches.  

Table 8 shows the results obtained by applying the model from each method 

in their respective test groups. 

Table 8: Validation metrics of the test step. 

Test step Method 1 Method 2 Method 3 Method 4.1 Method 4.2 Method 4.3 

Sensitivity 90,12% 89,85% 76,03% 74,62% 74,31% 67,56% 

Specificity 98,02% 97,91% 97,82% 89,85% 85,54% 90,03% 

Accuracy 97,93% 97,82% 97,40% 89,55% 85,33% 89,60% 

4.4. Discussion 

The results show the efficiency of the proposed methods, even in a 

heterogeneous database, composed by exams from different MRI devices and 

WML related to different pathologies. The parameter values used are essential to 

achieve these results. 
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First, as explained in Section 3.1.3 and 3.3.3, it was decided to use SLIC0 

with 3500 superpixels per slice. This value was empirically the best choice to 

possibility detection of even the smaller lesions but also allows that larger lesions 

could be formed by sets of superpixels. 

Also, as explained in Subsection 2.4.2, it was decided that CNN patches, 

used to represent superpixels, should be of size 45x45 for Methods 1, 3 and 4, and 

42x42 for Method 2. This possibilities that patches could be large enough to carry 

meaningful information and also possibilities to capture useful information from 

tissues surrounding the lesions. 

Finally, as explained in Subsection 2.4.2, the parameters from CNN were 

empirically chosen based on training sessions. Their choice, however, were 

influenced by the size of patches because if patches were applied in many layers of 

convolution and pooling, it could result in few pixels or none to reach the fully 

connected layer, making it impossible for the network to distinguish the classes 

between WML region and non-WML region. 

On the other hand, if fewer convolution and pooling layers were used, there 

would be fewer and less representative feature maps, and consequently less features 

would be presented to the fully connected layer. This would generate few individual 

characteristics for each patch and proportionally more pixels, making the network 

less discriminating. In addition, our approach also generated less false positives in 

detriment of the correctness of the lesion regions. 

The first convolutional layers of a CNN typically detect various forms of 

edges, corners and other basic structuring elements [109], which is not important in 

this case, since edges in white matter lesions and its regions do not tend to be well-

defined. Thus, for the proposed methods, networks with more convolution layers 

obtained the best results. 

As important as the chosen parameters are to achieve these results, they 

expose the limitations of their algorithms. 

First, it is known that one of the limitations of CNN is that it commonly 

requires a larger number of patches to achieve a good model. This limitation is 

reduced in Methods 1 and 2 since the database 1 has a reasonable size. Also, since 

it is used regions in all brain, there are many patches to train CNN. However, the 

Methods 3 and 4 achieved lower results, even using T1 and FLAIR patches, because 

of the size of database 2, which generated much less patches for an effective 

training. 

Other limitation of the proposed methods is that, while using small size 

superpixels assure that smaller lesions are well represented, the larger ones, which 

are composed by many superpixels, does not always has all of it superpixels 

detected. So, this is also a limitation in detecting lesions related to different types 
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of pathologies. 

A limitation in CNN is the number of parameters. A reasonable CNN 

requires a great number of parameters since it normally presents input layers, 

convolution layers, pooling layers and the fully connected layer and more. So, the 

study of these parameters commonly requires a lot of time and experimenting. To 

overcome that, in this work, many training sessions were used to search for the best 

parameters. 

Finally, CNN is also known for its demand for high computational time. 

This also increases as the number of patches increases. In this work, where many 

training sessions were necessary to search for the best configuration for CNN, this 

became evident. The obvious solution is to use a powerful hardware. For training 

sessions, it was used one NVIDIA Titan X graphics cards to possibility faster 

results. On the other hand, after the training phase is completed, the classification 

of all patches from a MRI brain is done in some seconds, even using CPU. For 

example, applying all steps of Method 1 for classification in one complete MRI 

takes around just three minutes in an Intel Core i5 processor of 2.8 ghz. 

4.5. Study of cases 

In this section, it is presented some study of cases. They illustrate the results 

of the detection over MRI slices and compare them with their respective markings. 

Each study of case is from one slice of different patients. The study of cases are 

related to Method 1 (Section 3.1). 

The Figure 27 shows that the method could detect almost all WML. It also 

shows that it was able to segment almost as precise as the marking. 

The Figure 28 show that almost all WML were detected. However, this 

result also shows a number of false positives. This has happened probably because 

there are regions of hyperintensity that are not WML. It is expected that training 

with more cases could reduce such cases. 

Figure 29 shows other case where all WML were detected. As we can see, 

a false positive was also found. However, this false positive may actually be a WML 

with less than 1 mm of diameter. Specialist was instructed to ignore such cases, but 

it is interesting to note that our method was able to find it. 

Figure 30 shows other case where there all WML were detected, but with 

false positives. Some of these false positives are actually WML that were ignored 

by its small sizes, but other are real false positives. Again, it’s expected that a larger 

train database can overcome these issues. 
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                                     (a)                                                                           (b) 

Figure 27: Study of case 1. (a) represents a slice with marked WML and (b) 

represents the detection result. 

 

 

                                    (a)                                                                             (b) 

Figure 28: Study of case 2. (a) represents a slice with marked WML and (b) 

represents the detection result. 
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                                      (a)                                                                           (b) 

Figure 29: Study of case 3. (a) represents a slice with marked WML and (b) 

represents the detection result. 

 

 

                                      (a)                                                                           (b) 

Figure 30: Study of case 4. (a) represents a slice with marked WML and (b) 

represents the detection result. 

4.6. Comparison with related works 

In this section, it is presented a comparison of the results of this work with 

other related works. These related works are shown in Table 9, that presents 

information about types of diseases associated to the lesions, number of patients 
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composing the databases and performance metrics (sensitivity and specificity) 

about their methods. 

Table 9: Comparison with related works 

Work Disease 
Number of 

Subjects 
Sensitivity Specificity 

Anbeek et al. [110] 
Arterial vascular 

disease 
20 97% 97% 

Lao et al. [111] Diabetes 45 85% 99% 

Kruggel et al. [112] Dementia 116 90% 91% 

de Boer et al. [113] Different types 6 79% — 

Khademi et al. [114] Different types 24 82% 99% 

Wang et al. [115] Different types 272 81% 97% 

Ong et al. [116] Different types 61 67% 40% 

Shi et al. [117] Acute Infarction 91 80% — 

Roura et al. [8] Lupus 30 62% 80% 

Method 1 Different types 91 90,12% 98,02% 

Method 2 Different types 91 89,85% 97.91% 

Method 3 Different types 73 76,03% 97,82% 

Method 4.1 Different types 73 74,62% 89,85% 

Method 4.2 Different types 73 74,31% 85.84% 

Method 4.3 Different types 73 67,56% 90.03% 

 

Anbeek et al presents arguably the highest results from related works. 

However, the database used in his work is too small, which makes difficult to 

validate it and evaluate the generality of its method. In addition, it only considers 

WML of arterial vascular disease. Lao et al., Kruggel et al., Shi et al. and Roura et 

al. works also consider only lesions related to a single disease. In fact, it is not 

common to find works that detect lesions related to several brain pathologies in 

literature. 
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de Boer et al. and Khademi et al. works considers WML of different types 

of diseases, but their databases have few samples, which compromises their 

evaluation. On the other hand, Shi et al. presents an average size database and 

considers several types of diseases, but it presents lower sensitivity and specificity 

than this proposed work. The only work that presents a well populated database, 

considers different types of diseases and present competitive results is Wang et al.  

The comparison with related works shows that the proposed method has 

significant results compared with literature. Although it is not common works that 

detect WML from different diseases, this work presents high results compared with 

those who does. The first two proposed methods show excellent results compared 

with the related works while other proposed methods, with fewer samples to train, 

has potential to achieve even better results once we acquire a larger database, since 

they use FLAIR and T1 MRI together. 

It is worth remembering that it is not possible to make a faithful comparison 

with the related works, since the related works do not use the same database of this 

method. However, the database of this thesis is quite heterogeneous, since images 

were acquired from different MRI devices and present lesions of different types of 

diseases, which shows that this method can present robust results regardless of the 

materials used in it. 

The proposed method presents other advantages to the related works. 

First, it is important to note that proposed method does not rely on any 

candidates reduction technique. Here, all regions of the brain, subdivided in 

superpixels, are classified by machine learning, so there are much more candidates 

to classify than the related works. This shows that the presented method is reliable 

to classify regions of all the brain tissue. 

Also, CNN does not need an explicit feature extraction step, as explained in 

Subsection 2.4.1., which is not a simple task. Finally, since SLIC0 contains only 

one parameter and segment entire image with good results and CNN does not rely 

on a feature extraction step, that is normally specific each problem, and classifies 

all superpixels, the proposed method can be considered as generalist and has a large 

potential to be used in other modalities of images and problems. 

Thus, it is concluded that the proposed method occupies a prominent place 

in the literature, being able to reach competitive results in the task of WML 

detection, especially if compared with methods that detects WML related with 

different types of diseases.
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5. Conclusions 

5.1. Work Overview 

This work presented four methodologies for the detection of WML regions 

in MRI.  

The first method can be applied on MRI of modality FLAIR. It uses 

preprocessing techniques for image enhancement, SLIC0 for candidates 

segmentation and CNN for candidates classification. 

The second method also can be applied on MRI of modality FLAIR. The 

main difference from first method is that it uses parallel CNN and multiscale 

patches for candidates classification. 

The third method can be used in pairs of MRI, one of modality T1 and other 

of modality FLAIR. It uses preprocessing techniques for image enhancement and 

image registration for better combined usage of the images. Then, it uses SLIC0 for 

candidates segmentation on both images and proposes a parallel CNN for 

candidates classification. 

The fourth method also can be used in pairs of MRI, one of modality T1 and 

other of modality FLAIR. The main difference from third method is that it uses 

common CNNs with patches generated from pixelwise comparing operations 

applied in T1 and FLAIR images. 

To validate the proposed methods, a private, heterogeneous and well-

populated database was used in order to detect WML regions. 

5.2. Work Evaluation 

The first and second method has promising results while the third and fourth 

depends on a larger database for achieve presumably even better results. 

The use of preprocessing techniques helped to greatly reduces the images 

area of study, maintaining only the brain. The results show that the brain 

segmentation worked well in all the database. 

The use of histogram matching, which is commonly used in databases to 

reduce inhomogeneity issues among the images also improved the results [100–

102]. 

In general, the use of SLIC0 proved to be very promising on the generation 

of CNN patches. However, since there are too much candidates on each MRI, it has 

been exposed the possible need for candidate reduction techniques. The idea is to 

discard the excess of regions before train and test steps. 

It has also been proposed to use CNN for classification task. The CNN 
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showed to be quite effective. Even with simple architectures, it was possible to 

detect about a great number of WML regions. 

We also highlight the large number of empirical parameters used on CNN, 

which may become a negative factor. On the other hand, it is noteworthy that using 

a CNN, an explicit extraction and feature selection step is unnecessary, which in 

machine learning is usually a disturbing step. 

The detection of WML regions also presents significant results compared to 

related works. In addition, many studies investigate only one type of pathology 

while our work has excellent results in detection of different types of WML. Thus, 

a robust method capable of generalizing the detection of WML in the white matter 

of the brain is presented. 

Concluding, the method presented is very promising. It is possible to affirm 

that the methodologies may assist the specialists on the task of WML detection. 

5.3. Work Contributions 

This thesis presents many contributions. Here are those considered more 

relevant. 

The main contributions of this work are its own innovative methods. Their 

innovation comes from the usage of CNN and parallel CNN for classifying SLIC0 

superpixels-based patches, which was never done before. Such innovations bring 

good segmentation results while being, in theory, much faster than other methods 

in literature. 

Other main contribution is a robust and user-friendly segmentation software 

(Appendix A), which contains many visualization and segmentation tools and can 

be used not only for Brain MRI but also to any image in DICOM standard. It also 

features an automatic WML segmentation based on the first method of this thesis 

(Section 3.1).  

The last main contribution is a large database composed by more than 500 

MRI of modality FLAIR with specialist markings that is being constructed with the 

use of the segmentation software. This database is still being marked and will be 

available public soon. 

5.4. Future Works 

Even with good results, there is still a good number of changes that can be 

applied to achieve higher performance in the results. Following, it is presented some 

method issues and proposals to overcome them as future works. 

First, since we are classifying all candidates generated from SLIC0 

superpixels, it would be interesting trying to implement some candidate reduction 
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technique. Once many superpixels are from white matter hypointense regions, 

which are normally healthy tissue, unsupervised clustering techniques based only 

on image intensity, such as K-means and Fuzzy C-means, could have good results. 

Also, trying to remove gray matter, which have hyperintense tissue like WML 

tissue, could improve the results. 

One idea to possible improvement in candidates segmentation is to use 

SLIC0 with different sizes of superpixels, once WML appears in different sizes. 

Other future work could be an analysis to improve the architecture of CNN 

and, consequently, the classification results. It would be interesting to use 

techniques in order to find the network parameters automatically, such as 

evolutionary and other optimization algorithms. 

Although the CNN presented good results, there are other machine learning 

techniques that could be used. Support Vector Machines (SVM) were widely used 

on many machine learning problems and even in WML detection [68-70]. So, SVM 

with different kinds of attributes (including texture) could be an alternative to CNN. 

Finally, since the candidates are superpixels, the contour of final 

segmentation may be less effective than a pixelwise classification. So, one future 

work can be a second classification focused on pixels inside superpixels. This 

would refine the contour of the segmentation while being much faster than a 

pixelwise classification of all brain pixels. 
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A. WML detection software 

This appendix presents the prototype of the WML Detection Software, 

developed during the period of elaboration of the thesis to support the research and, 

at the same time, provide the necessary resources for specialists for MRI 

visualization and WML segmentation. Some of these resources are: visualization 

of the slices, zoom, pan, rotation, contrast window adjustment, manual and 

automatic segmentation and save markings in file.  

This software was developed for WML marking. The main objective is to 

deliver the necessary tools for radiologists to create a database of WML markings.  

Therefore, there was a concern for the graphical user interface (GUI) to be friendly. 

Moreover, the faster the radiologist learns to handle the system, the faster the 

volumes are marked.  

Although this software has specific initial use for brain MRI volumes, it can 

be used to visualize any image using the DICOM standard and can easily be adapted 

to images of other fields of study. 

The automatic segmentation of WML from the software was developed 

following the method of Chapter 3 which uses only FLAIR image and is faster than 

other methods described in this thesis. 

This appendix is structured as follows. The Section A.1. describes the 

requirements raised for software specification. Section A.2. describes the use cases 

defined from the raised requirements. Section A.3. shows the modeling and 

developmental details used to develop software that addresses the use cases. 

Finally, Section A.4. shows the software GUI and how to perform its features. 

A.1. Requirements and Specifications 

This section shows the gathered requirements and specifications for the 

development of the MRI Visualization and WML segmentation Software. They are 

specified below: 

1. Read and load DICOM volumes. The user can open a volume of DICOM 

images by selecting the folder and loading it to the program. 

Priority (X) Essential ( ) Important ( ) Desirable 

Effort ( ) High (X) Medium ( ) Low 

 

2. Visualization of DICOM Volume. The user can view the DICOM volume 

slices in the program. 
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Priority (X) Essential ( ) Important ( ) Desirable 

Effort ( ) High (X) Medium ( ) Low 

 

3. Interaction with volume. The user can zoom, pan, rotate, adjust the contrast 

window, and also obtain pixel information from the volume sections using 

mouse commands in the program. 

Priority ( ) Essential (X) Important ( ) Desirable 

Effort ( ) High (X) Medium ( ) Low 

 

4. Manipulate WML markings manually. The user can manually add, edit and 

remove WML markings over the volume slices using the mouse. 

Priority (X) Essential ( ) Important ( ) Desirable 

Effort ( ) High (X) Medium ( ) Low 

 

5. Perform WML automatic segmentation. The user can automatically segment 

WMLs in the program. The segmented markings should be displayed after the 

process. 

Priority ( ) Essential ( ) Important (X) Desirable 

Effort (X) High ( ) Medium ( ) Low 

 

6. WML markings exhibition. The user can show or hide WML markings 

displayed on the volume section in the program. 

Priority ( ) Essential ( ) Important (X) Desirable 

Effort ( ) High ( ) Medium (X) Low 

 

7. Maintain a WML markings history. The user can save the WML markings 

description on a file in the program. This file can be loaded back later.  The 

markings description loaded from file should be displayed on viewer so the 

user can continue his work. 

Priority (X) Essential ( ) Important ( ) Desirable 

Effort ( ) High (X) Medium ( ) Low 

A.2. Use Cases 

This section shows the Use Cases Diagram and describes the Use Cases that 
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have been defined to meet the requirements gathered in section A.1. Figure 31 

shows this diagram. The Use Cases are described after. 

 

Figure 31: Use Cases Diagram of the WML segmentation software. 

 

1. Open DICOM Volume. 

Pre-conditions None. 

Description 

The user searches for a folder with DICOM files in a window. After 

choosing the folder, the program will read and load your information 

and use them to generate a seismic image in the GUI volume viewer. 

 

2. Change Volume Slice. 

Pre-conditions Volume slice displayed in the viewer. 

Description 
The user clicks on tool to move to next slice or previous slice. The 

viewer exhibited the desired slice after clicking the tool. 
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3. Open Marking File. 

Pre-conditions Volume slice displayed in the viewer. 

Description The user looks for a tag file in a window. After choosing the file, the 

markings described in the file are displayed in the viewer on the slice. 

 

4. Save Marking File. 

Pre-conditions Volume slice displayed in the viewer. 

At least one marking must exist. 

Description The user chooses a folder to save a file containing the description of 

markings made in the program. 

 

5. Show / Hide Markings. 

Pre-conditions Volume slice displayed in the viewer. 

At least one marking must exist. 

Description The user clicks on the marking exhibition tool. The program viewer 

shows / hides the markings. 

 

6. Execute automatic segmentation. 

Pre-conditions Volume slice displayed in the viewer. 

Description The user clicks on the WML auto-targeting tool. The program 

performs segmentation and draws up the resulting markup. 

 

7. Add Manual Marking. 

Pre-conditions Volume slice displayed in the viewer. 

Description The user clicks on the manual marking tool. Then click on the viewer 

repeatedly to draw the marking. 

 

8. Edit Manual Marking. 

Pre-conditions Volume slice displayed in the viewer. 

Manual marking added. 

Description The user clicks and presses on the points of the manual segmentation 

and moves them to edit its shape. 
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9. Remove marking. 

Pre-conditions Volume slice displayed in the viewer. 

At least one marking must exist. 

Description The user clicks the marking removal tool and then clicks on the 

markings that he wants to remove. The program removes the chosen 

markings from the viewer. 

 

10. Apply Zoom. 

Pre-conditions Volume slice displayed in the viewer. 

Description The user rotates the mouse wheel over the volume section to zoom 

in or zoom out. 

 

11. Apply Pan. 

Pre-conditions Volume slice displayed in the viewer. 

Description The user clicks and holds the mouse wheel over the volume section 

and moves the mouse to apply pan. 

 

12. Apply Rotation. 

Pre-conditions Volume slice displayed in the viewer. 

Description The user presses the Ctrl button and moves the mouse cursor to 

apply the rotation. 

 

13. Adjust Contrast Window. 

Pre-conditions Volume slice displayed in the viewer. 

Description The user clicks and holds the left mouse button on the seismic 

image and moves the mouse to apply the contrast adjustment. 

 

14. Check Pixel Information. 

Pre-conditions Volume slice displayed in the viewer. 

Description The user moves the mouse cursor to the pixel that he wants to see 

the location and value. 
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A.3. Development 

This section contains information on the development phase of the software. 

A.3.1. Platforms and Technologies 

The program was written using the C ++ 14 and Python 2.7 languages. 

The C ++ code was written in the Microsoft Visual Studio 2017 IDE and 

using the Visual C ++ Compiler, but because it uses the C ++ 14 standard and 

multiplatform libraries, it can be recompiled to other compilers such as MinGW 

(Windows), GCC (Linux), and CLang MacOS). For the development of the GUI, 

the wxWidgets library [132] was used. ITK [133] and OpenCV libraries [134] were 

used for supporting the image processing algorithms on MRI volumes. For 

visualization and interaction with the volume slices and markings, the VTK library 

[135] was used. 

The Python code was also written in the Microsoft Visual Studio 2017 IDE 

with support of the Anaconda package manager. The Python interpreter and used 

packages are also cross-platform. The Python code is completely used to machine 

learning part of WML segmentation (from patches generation to classification). In 

addition to the base packages, the main packages used are Keras [136], Theano 

[137] and Tensorflow [138], all of which are used to classify candidates through 

CNN. 

Table 1: Summary of platforms and technologies used in software 

development. 

Table 10: Summary of platforms and technologies used to develop the software. 

Programming languages C++ 14, Python 2.7 

IDE used for development Visual Studio 2017 

Supported compilers / 

interpreters 
Visual C++ Compiler, Python 2.7 Interpreter 

Main Libraries / packages 
wxWidgets 3.0.2, ITK 4.6.0, VTK 6.1.0, OpenCV 2.4.9, 

Keras 2.1.3, Theano 1.0.1, Tensorflow 1.2.1 

Platforms Windows (portable to MacOS and Linux) 

A.3.2. Modeling and Architecture 

Following, it is shown the modeling and architecture for software 

development. 

The architecture of the software uses the Model-View-Presenter (MVP) 

standard, which is a variation of the Model-View-Controller architecture standard 

and is more aimed towards building GUI. In this standard, classes are divided into 
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three layers: Model, View, and Presenter. The Model layer accommodates the 

application model / data and provides behaviors to access it systematically. It should 

be independent, should have no association with GUI issues. Thus, it is possible to 

reuse the same model for different GUI types. The View layer accommodates the 

interface to show the model data and to direct the user event results from it to the 

Presenter layer. The View layer knows the Model, but the opposite is not true. 

Finally, the Presenter layer acts between View and Model. It receives the data from 

the Model layer and treats it to display in the View and receives the event-generated 

entries from the View to update the Model. Figure 32 illustrates the MVP 

architecture standard. 

 

Figure 32: Model-View-Presenter standard. 

 

Figure 33 shows modeling of the software through a Class Diagram. The 

attributes and methods were excluded for better visualization. The blue classes 

represent the Model layer, the orange classes represent View layer and the green 

classes represent Presenter layer.  

Starting with the Model Layer classes, the BrainVolumeReader class is 

responsible for reading a folder with DICOM files. The output of this class is an 

object of the BrainVolume class, which is the representation of the brain MRI 

volume whose information was in the DICOM files.  

The MarkingsReader class is responsible for read files containing markings 

descriptions. Once it reads a file, it instantiates a MarkingsMap object, which 

manages markings descriptions by adding, editing or removing them. 

MarkingsWriter class, on the other hand, is responsible for save markings 

descriptions from a MarkingsMap in a file on disk. 

The BrainLesionSegmenter is the class responsible for the automatic WML 

segmentation on a BrainVolume. To do this, it executes these substeps: brain 

segmentation (performed by BrainSegmenter), histogram matching (done by 

HistogramMatching class), superpixel segmentation (performed by 
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SLIC0Segmenter), and superpixel classification (performed by CNNClassificer 

that uses internally the CNNPatchesGenerator to generate patches from 

superpixels). The result of the execution of the BrainLesionSegmenter procedures 

is a MarkingsMap object.  

 

Figure 33: Class Diagram. 

 

Most of the Model Layer classes were implemented using ITK and 

OpenCV, except the CNNPatchesGenerator and CNNClassifier classes that mainly 

used the Keras and Theano / Tensorflow packages.  

In the View layer, the BrainFrame class is responsible for building the GUI, 

implemented with the support of wxWidgets. It inherits from wxFrame, which 

wxWidgets window class. It features the menu bar, tool bar and a 

BrainVolumeViewer, which is the class that uses the VTK library to display the 

graphical representation of the MRI volume and graphical representation of 

markings. For handling events that originate from user interaction with the viewer, 

the PixelInformationEventHandler, ManualMarkingEventHandler and 

MarkingRemoverEventHandler classes are used. The first one is responsible for 

getting the coordinates of the mouse cursor over the image and displaying them in 

the viewer along with the value of the pixel whose cursor is over and the number of 

current slice. The second one, when activated, is responsible for capturing the left-
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click coordinates on the image to draw markings. The third one, when activated, is 

responsible for capturing the left-click coordinates on the image to remove 

markings. These handlers classes inherit from MouseEventHandler, which provides 

the "shell" of the mouse event handling, such as a method that converts the 

coordinates of the mouse cursor to image coordinates. In turn, it inherits from 

vtkCommand, which is the VTK event handling class. Finally, there is the 

BrainListener class. It is nothing more than a communication interface with 

BrainPresenter, informing it about the interactions made on the GUI. 

In the Presenter layer, we have two classes. The first is BrainPresenter, 

which receives window interactions through the BrainListener interface and uses 

them to update the objects of the Model layer and then updates the View layer with 

the changes. The second class is SeismicApplication, which is only responsible for 

instantiating and destroying SeismicPresenter. It works like a main function one of 

a normal software and inherits of class wxApp, obligatory for initialization of 

wxWidgets GUI.  

To better understand the two of the main functions of the program, two 

sequence diagrams were created (Figures 34 and 35). The classes displayed in these 

diagrams show the colors of the MVP layer that they are included. 

 

Figure 34: Sequence Diagram of DICOM volume reading. 

 

The first diagram shows the relationship of the classes in the DICOM 

volume reading and loading tasks. First the user clicks on the submenu or tool 

"Abrir volume ..." contained in the "Arquivo" menu. This triggers the event that 

activates the BrainFrame method onOpenImage method which in turn displays a 

directory selection window. Once the directory is chosen, BrainFrame notifies 

BrainPresenter through the BrainListener interface, which in turn instantiates a 

BrainVolumeReader so that it reads the file. If the file is valid, BrainVolumeReader 

instantiates a BrainVolume with the file information. The BrainFrame once again 
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calls the BrainPresenter through the BrainListener interface to obtain the volume 

information and passes it to the BrainVolumeViewer which creates a graphical 

representation of the volume and displays it. 

  

Figure 35: Sequence Diagram of automatic WML segmentation. 

 

The second sequence diagram shows the class relationships in the WML 

auto-segmentation task. To perform this task, the user should click on the 

"Segmentar automaticamente" tool. BrainFrame will tell BrainPresenter about the 

command through BrainListener. BrainPresenter will instantiate a 

BrainLesionsSegmenter by passing the currently used BrainVolume. The 

BrainLesionsSegmenter will execute all targeting sub-steps involving the 

BrainSegmenter, HistogramMatching, SLIC0Segmenter, and CNNClassifier 

classes (which internally uses CNNPatchesGenerator). Finally, a MarkingsMap 

resulting from this operation is returned to BrainPresenter and BrainPresenter sends 

the markup information to the BrainVolumeViewer. BrainVolumeViwer will create 

graphical representations of the markings and display them. 

A.4. Software 

This section introduces the software of WML detection software. It is shown 

and explained its GUI as well as how to use its features. 

A.4.1. Graphical User Interface 

Figure 36 shows the typical GUI of the software. The interface components 

have been numbered and are defined below. 
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Figure 36: GUI Components. 

 

1. Menubar. In it, the user chooses the features he wants to run in the 

software. 

2. Toolbar. As in the menubar, here the user chooses the functionality that 

he wants to perform. 

3. Volume section. Current slice of the volume loaded in the program. 

4. WML marking. One of the examples of markings made on the slice. 

5. Pixel information. These values are displayed when the user moves the 

mouse cursor over the image. They are the coordinates of the image and 

the pixel value of that coordinate. If the cursor is outside the image, the 

message "Fora da imagem" is displayed. 

6. Contrast window information. They are information about the volume 

contrast window and can be adjusted to improve viewing of specific 

points. 

A.4.2. Features and How to Use 

For the user to open a DICOM volume, he must first select the option in the 

menu or toolbar. After that, the directory selection window will be displayed, as in 

Figure 37. 
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Figure 37: DICOM directory selection window. 

 

Once the directory is chosen and "Abrir" button is clicked, the image is 

displayed in the main window viewer, as in Figure 38. 

 

Figure 38: Displaying volume slice. 

DBD
PUC-Rio - Certificação Digital Nº 1412732/CA



96 

 

 

 

Once the volume slice is displayed it is possible to adjust display parameters, 

such as zoom and pan (Figure 39) and contrast window (Figure 40).  

 

Figure 39: Applying zoom and pan on volume slice. 

 

 

Figure 40: Contrast Window Adjustment. 
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To zoom in, simply rotate the mouse wheel forward on the volume slice, 

and to zoom out, rotate the mouse wheel back. To apply the pan, click and hold the 

mouse wheel and move the mouse to where you want to move the image. 

To adjust the contrast, click on the image with the left mouse button and 

move it. 

When you move your mouse cursor over the image, you will see information 

about the pixel it is on. This is displayed in the lower left corner of the viewer. 

To manually segment, user must click on the "Segmentar manualmente” 

tool. After that, click on the points around the region he wants to mark. The dots 

are connected by splines curves. Figure 41 shows this. 

 

Figure 41: Manual segmentation process. 

 

Once you've completed marking, you can adjust it. To do this, click on one 

of the marking points and drag to adjust the contour. This is shown in Figure 42. 

Other features include:  

• Remove the markings by clicking on the "Remover marcações" tool 

and then click on the markings to remove. 

• Automatically segment by clicking the "Segmentar 

automaticamente" tool. 

• Show and hide the markings by clicking on the "Mostrar marcações" 

tool. 
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Figure 42: Manual segmentation process. 
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